ExpeER
Distributed Infrastructure for EXPERimentation in Ecosystem Research
Grant Agreement Number: 262060

SEVENTH FRAMEWORK PROGRAMME
Capacities
Integrating activities: Networks of Research Infrastructures (RIs)
Theme: Environment and Earth Sciences

DELIVERABLE D3.2
Deliverable title: ExpeER Metadata Specification for Dataset Level

Abstract:
This document describes the community ExpeER metadata profile within the scope of the ExpeER and EnvEurope projects based on EML (Ecological Metadata Language) specification. A detailed description of metadata crosswalk between EML specification and ISO19115 standard is included together with metadata examples, transformation file and validation report in the appended EnvEurope metadata specification.

Due date of deliverable: M18 Actual submission date: M20
Start date of the project: December 1st, 2010 Duration: 48 months
Organisation name of lead contractor: BGU
Authors: David Blankman** (ExpeER),
Tomas Kliment* (EnvEurope), Alessandro Oggioni* (EnvEurope)
Contributors: Nicolas Bertrand (CEH), Johannes Petersein (UBA)
Revision N°: Final
Dissemination level:

<table>
<thead>
<tr>
<th>PU</th>
<th>Public (must be available on the website)</th>
<th>[X]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>Restricted to other programme participants (including the Commission Services)</td>
<td>[]</td>
</tr>
<tr>
<td>RE</td>
<td>Restricted to a group specified by the consortium (including the Commission Services) (precise to whom it should be addressed)</td>
<td>[]</td>
</tr>
<tr>
<td>CO</td>
<td>Confidential, only for members of the consortium(including the Commission Services)</td>
<td>[]</td>
</tr>
</tbody>
</table>
Table of Content

1 EXECUTIVE SUMMARY .. 1
2 INTRODUCTION .. 1
3 METHOD .. 2
 3.1 REQUIREMENTS FROM EXPEER .. 2
 3.2 SITE METADATA VERSUS DATASET METADATA ... 2
 3.3 GEOGRAPHIC LOCATION .. 2
 3.4 DATA TABLE ... 3
 3.5 NORMATIVE REFERENCES ... 3
 3.6 TERMS AND DEFINITIONS ... 3
4 STATE OF THE ART / EXISTING RELEVANT STANDARDS ... 6
 4.2 INSPIRE METADATA REGULATION OVERVIEW .. 8
5 METADATA SPECIFICATION: DATA TABLE .. 9
6 TECHNICAL IMPLEMENTATION OF THE MD SYSTEM ... 12
7 ACKNOWLEDGMENTS AND CONTACT ... 29
ANNEXES ... 30
8 APPENDIX 1: VALIDATION BY EXPEER PARTNERS ... 30
9 APPENDIX 2: ENVEUROPE METADATA SPECIFICATION - ATTACHED 31

APPENDIX 2 has separate page numbers (1-86)
Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>EML</td>
<td>Ecological Metadata Language</td>
</tr>
<tr>
<td>INSPIRE</td>
<td>Infrastructure for Spatial Information in Europe</td>
</tr>
<tr>
<td>HTML</td>
<td>Hypertext Markup Language</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>URI</td>
<td>Uniform Resource Identifier</td>
</tr>
<tr>
<td>URL</td>
<td>Uniform Resource Locator</td>
</tr>
<tr>
<td>XML</td>
<td>eXtensible Markup Language</td>
</tr>
<tr>
<td>XSD</td>
<td>XML Schema Definition</td>
</tr>
<tr>
<td>XSLT</td>
<td>Extensible Stylesheet Language Transformations</td>
</tr>
</tbody>
</table>
1 Executive summary

This document describes the community ExpeER metadata profile within the scope of the ExpeER and EnvEurope projects based on EML (Ecological Metadata Language) specification. A detailed description of metadata crosswalk between EML specification and ISO19115 standard is included together with metadata examples, transformation file and validation report in the appended EnvEurope metadata specification.

2 Introduction

Providing sufficient metadata is one of the crucial aspects in sharing and exchanging data in a scientific network. Information on the background of the observation or experiment and the content of the data files can be summarized in a metadata description and stored and searched in an online catalog. The metadata description also describes how that data file can be accessed. This allows for a centralized metadata catalog with decentralized data storage. Alternatively a data provider can attach a metadata document with the data file. Following existing standards for metadata structure is crucial to ensure not only human readability but also machine readability (e.g. workflow engines).

Within the ENVEurope project a similar evaluation of existing standards and the development of the community profile based on EML was already done for the domain of ecological long term monitoring sites. This document is appended. As there is close match in the characteristics of the sites and the related data especially in relation to the monitoring sites within ExpeER, this metadata specification was taken as the starting point. Because the ENVEurope project envisions a common data model, its metadata specification does not include a e.g. data table description as part of its requirements. As an infrastructure project, combining experimental sites and observational sites, researchers in the ExpeER community are likely to exchange data that varies significantly in data models. Therefore additional metadata is needed to make data sharing in the ExpeER community possible.

Within the ExpeER project the following steps were carried out in order to provide a metadata specification for long term monitoring as well a experimental sites:

a) to evaluate existing standards relevant for both experimental as well as monitoring data
b) to define a metadata specification which fulfill the requirements of the ExpeER project.

The resulting document provides the metadata specification proposed for the ExpeER projects for data set level description. It corresponds to the ExpeER Task T3.1. The detailed metadata specification is provided as an annex to the report. It is based on the EnvEurope metadata specification extended by the requirements of the ExpeER project.

In addition, this metadata specification aims to ensure feasible interoperability also with other levels of LTER network and with GeoPortal and other EU data networks. The US LTER (United States Long Term Ecological Research) network adopted EML as its metadata standard in 2003. The International LTER officially adopted EML in 2008. Therefore an EML (Ecological Metadata Language) specification has been defined as a reference metadata standard for the ExpeER metadata profile. It is intended that EML compliant ExpeER metadata documents in will be exported into the LTER-Europe Metacat. The LTER-Europe Metacat server will be a DataOne node when DataOne becomes operational during the second half of 2012 <https://www.dataone.org/> . As of 15 January 2012 there were over 25,000 EML documents in the KNB data network http://knb.ecoinformatics.org/ (precursor of DataOne) of
which over 7,000 are from the US-LTER. In addition to the DataOne network, ExpeER documents will be made available on the INSPIRE GeoPortal.

This metadata specification will also fulfill the requirement to provide metadata from the ExpeER domain to the European Spatial Data Infrastructure as defined by INSPIRE directive framework on the data themes to support policy makers decisions within the ecological domain. To fulfill this goal a metadata crosswalk between the ExpeER metadata (EML) and INSPIRE metadata defined by Commission Regulation (EC) No 1205/2008 of 3 December 2008 implementing Directive 2007/2/EC of the European Parliament and of the Council as regards metadata (based on EN ISO 19115:2005 Geographic information – Metadata) has been developed. More details about this part are described in the chapter 6 of the appended EnvEurope metadata standard.

The general objective of this metadata specification is to provide list of elements defined as important for data exchange in the ExpeER community. By data exchange we mean data discovery, evaluation and use. This specification including the attached EnvEurope report intends to cover all three levels of metadata (discovery, evaluation, synthesis).

This document is a technical specification, not a user guide. In addition, this document is not, a specification for a user interface or software tool.

3 Method

3.1 Requirements from ExpeER

The 33 ExpeER facilities include Highly Instrumented Observational Sites (HIOS), Highly Instrumented Experimental Sites (HIES), 2 Analytical platforms and 2 Ecotrons. However the specification intends to provide standards and guidelines based on the experience gained within a group of representative beneficiaries from HIOS, HIES and Ecotrons. The metadata standard has been defined as a result of user requirements exercises performed within the target stakeholder groups (a subset of ExpeER facilities). The user requirements for content were then compared with the INSPIRE and Ecological Metadata Language (EML) specifications.

3.2 Site Metadata versus Dataset Metadata

Dataset document is distinct from site documentation; however, there is overlap between the concepts. In the ecosystem research community, is increasingly documenting the datasets using international standards. The standard that we are describing in this document is different from the information requested by work package 1. The focus of WP1 is on site documentation. The WP1 questionnaire asks for information about sites, including the kinds of research that is done. This document addresses standards for documenting actual data. One site is likely to produce multiple datasets, and a single dataset may involve more than site. A meta-analysis is an example of a dataset that is likely to include more than one site’s information.

3.3 Geographic location

One of the main questions is whether standards developed by the ecosystem research community are applicable to the agricultural research community. Discussions with agricultural researchers made it clear that while the content or the purpose of the research may be different, the structure of the data is sufficiently similar that the same metadata standards can be applied to both kinds of research. Even with ecotrons, the structure of the data is similar. The interpretation of ecotron metadata requires judgment. For example, the location of an ecotron may have little relation to the
environment that it is simulating. However, it is possible that the location of an ecotron may have an effect of the result. Someone may want to compare the results of an ecotron at high altitude with one at low altitude that are attempting to simulate the same environment. If someone is searching a metadata catalog geographically, inappropriate ecotron metadata documents may be returned. The researcher would then ignore that dataset.

The Analytical Platforms can be seen as a different kind of participant. It is unlikely that the analytical platforms would produce datasets of their own, but the results of their analysis would be described in the methodology section of a research project. Even if a laboratory produced its own data, the data could be described using the standard metadata framework.

3.4 Data table

Because the EnvEurope project envisions a common data model, its metadata specification does not include a e.g. data table description as part of its requirements. As an infrastructure project, combining experimental sites and observational sites, researchers in the ExpeER community are likely to exchange data that varies significantly in data models. Therefore it is recommended that data table documentation be included in the ExpeER standard.

3.5 Normative references

The following normative documents provide the context and basis for the development and application of this document:

3.6 Terms and definitions

For the purposes of this metadata specification the following definitions and terms apply.

1. Dataset

Collection of data: A dataset is a collection of single parameters stored in a specific site. The dataset is not time dependent; each dataset can cover different time period with different frequency.

ALTERNATE DEFINITION

A dataset represents one or more data tables (text file, spreadsheet), GIS layers or database views, which the metadata describes. A dataset represents the file or files that will be provided to a person requesting the data. For example, if an Excel spreadsheet is being provided, then the spreadsheet can be considered to be a dataset. If the spreadsheet has three worksheets, then it is a dataset with three data tables. If the site stores its data in a relational database, then the data to be shared would be an exported view (query). The ENVEurope/ExpeER metadata standard does not require documenting the data table. For ENVEurope, a common data model is planned. The data table of the common model can be documented once and appended by the metadata entry tool to the higher-
level metadata document. For legacy data, documenting at the data table level is encouraged, but not required.

2. **EML or Ecological Metadata Language**
Metadata specification development for ecology discipline and ecological dataset (Michener et al., 1997): EML is implemented as a series of XML document types that can used in a modular and extensible manner to document ecological data. Each EML module is designed to describe one logical part of the total metadata that should be included with any ecological dataset (http://knb.ecoinformatics.org).

3. **EPSG**
Numeric codes, published by the OGP Surveying and Positioning Committee and created by European Petroleum Survey Group, to identify the geodetic reference systems adopted in different national realities.

4. **EUNIS**
The European Nature Information System developed and managed by the European Topic Centre on Biological Diversity (ETC/BD in Paris) for the European Environment Agency (EEA) and the European Environmental Information Observation Network (Eionet). EUNIS data are collected and maintained by the European Topic Centre on Biological Diversity for the European Environment Agency and the Environmental Information Observation Network to be used for environmental reporting and for assistance to the NATURA2000 process (EU Birds and Habitats Directives) and coordinated to the related EMERALD Network of the Bern Convention.

5. **GEMET or GEneral Multilingual Environmental Thesaurus**
Indexing, retrieval and control tool for the European Topic Centre on Catalogue of Data Sources (ETC/CDS) and the European Environment Agency (EEA). The basic idea for the development of GEMET was to use the best of the presently available excellent multilingual thesauri, in order to save time, energy and funds. GEMET was conceived as a “general” thesaurus, aimed to define a common general language, a core of general terminology for the environment. Specific thesauri and descriptor systems (e.g. on Nature Conservation, on Wastes, on Energy, etc.) have been excluded from the first step of development of the thesaurus and have been taken into account only for their structure and upper level terminology.

6. **INSPIRE**
An European Community Directive entered into force on May 15, 2007. This Directive lays down a general framework for created a Spatial Data Infrastructure (SDI) for the purposes of European Community environmental policies and policies or activities which may have an impact on the environment.

7. **INSPIRE theme**
The INSPIRE Directive addresses 34 spatial data themes needed for environmental applications. These themes are subdivided in the three annexes of the directive (see http://inspire.jrc.ec.europa.eu for a list of themes).

8. **ILTER-Europe Community**
Community composed by all Long Term Ecological Research sites. It focuses on different types of ecosystems: marine, lacustrine (lake), river and terrestrial. The mission of the Long Term community is: to track and understand the effects of global, regional and local changes on socio-ecological systems and their feedbacks to environment and society; to provide recommendations and support for solving current and future environmental problems (http://www.ilter-europe.net/).

9. **Metadata**
Information about a dataset including, but not limited to, the people/organizations involved in creating the data, methods used, keywords, how to retrieve the data, data use policies, geographic, temporal, and taxonomic coverage. This information is used to discover, evaluate, and retrieve a dataset.

10. NaturaSDI+
European Project which aims at establishing a Best Practice Network dealing with a cluster of the data themes listed in the Annexes I and III of the INSPIRE Directive and focused on the nature conservation issues.

11. Thesaurus
List words grouped together according to similarity of meaning (synonyms). In addition to a list of semantically similar terms in one language, e.g. “arid”, “dry”, “desert”, it may contain, translations into different languages. Also a thesaurus may contain more specific ontology-based definition of the concept represented by the terms in a given thesaurus entry.

12. UID or Unique Identifier
Identifier, which is guaranteed to be unique among all identifiers, used for those objects and for a specific purpose.

1. URI or Uniform Resource Identifier
String of characters used to identify a name or a resource on the Internet.

2. URL or Uniform Resource Locator
Type of URI that specifies where a known resource is available and the mechanism for retrieving it.

3. Web Service
Method for communication between two electronic devices over a network. Web Services were intended to solve three main problems, that is Firewall Traversal, Complexity, and Interoperability.

4. XML or Extensible Markup Language
Set of rules for encoding documents in machine-readable form.Symbol and abbreviated terms

For the purposes of this metadata specification the abbreviations apply:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>EML</td>
<td>Ecological Metadata Language</td>
</tr>
<tr>
<td>INSPIRE</td>
<td>Infrastructure for Spatial Information in Europe</td>
</tr>
<tr>
<td>HTML</td>
<td>Hypertext Markup Language</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>URI</td>
<td>Uniform Resource Identifier</td>
</tr>
<tr>
<td>URL</td>
<td>Uniform Resource Locator</td>
</tr>
<tr>
<td>XML</td>
<td>eXtensible Markup Language</td>
</tr>
<tr>
<td>XSD</td>
<td>XML Schema Definition</td>
</tr>
<tr>
<td>XSLT</td>
<td>Extensible Stylesheet Language Transformations</td>
</tr>
</tbody>
</table>
4 State of the Art / Existing Relevant Standards

Ecological Metadata Language (EML) is a metadata specification developed by the ecosystem researchers for use by the ecology discipline. It is based on prior work done by the Ecological Society of America and associated efforts (Michener et al., 1997, Ecological Applications). EML is implemented as a series of XML schemas that can be used in a modular and extensible manner to document ecological data. Each EML module is designed to describe one logical part of the total metadata that should be included with any ecological dataset.

The EML standard is made up of 23 modules (EML). The modules are grouped into the following groups:

- Root-level structure: **eml** module (metadata container)
- Top-level resource: **eml-dataset** (data sets description), **eml-literature** (citation specific information), **eml-software** (software specific information) and **eml-protocol** module (research protocol specific information). This metadata specification will focus only on eml-dataset.
- **eml-resource** module (provides base information for all resources). While eml-resource group is found in each of the top-level types (dataset, software, literature, and protocol some of its elements are useful only in dataset documentation.
- Supporting modules: **eml-access** (access control rules for resources), **eml-physical** (physical file format information), **eml-party** (used to describe data owners both individuals and organizations and data contacts), **eml-coverage** (information about geographic, temporal and taxonomic coverage extents), **eml-project** (research projects information) and **eml-methods** (methodological information for the resource)
- Data organization: **eml-entity** (entity level information within dataset), **eml-attribute** (attribute level information) and **eml-constraint** (information about relation ships among and within individual data sets)
- Entity types: **eml-dataTable** (information about data table entities), **eml-spatialRaster** (information about regularly gridded geospatial image data), **eml-spatialVector** (information about non-gridded geospatial image data), **eml-storedProcedure** (information about data tables resulting from procedures stored in a database) and **eml-view** (information about data tables resulting from a database query). This report will only describe eml-datatable.
- Utility modules: **eml-text** (text field formatting) **eml-unitTypeDefinitions** (unit definition)

The EML modules used can vary depending on the intended use as described in table below. Each level includes the modules described in lower levels.

adapted from: http://im.lternet.edu/im_practices/metadata/guides/EML_levels

<table>
<thead>
<tr>
<th>Level</th>
<th>Usage</th>
<th>Modules (elements) Involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Identification</td>
<td>title, creator, contact, abstract, keywords, publisher, publication date</td>
</tr>
<tr>
<td>L2</td>
<td>Discovery</td>
<td>eml-coverage (geographic, temporal, taxonomic)</td>
</tr>
<tr>
<td>L3</td>
<td>Evaluation</td>
<td>Intellectual Rights, project, methods, dataTable/entityGroup, dataTable/attributes</td>
</tr>
<tr>
<td>L4</td>
<td>Access</td>
<td>eml-access, eml-physical</td>
</tr>
<tr>
<td>L5</td>
<td>Integration</td>
<td>attributeList (full descriptions), constraint, quality control</td>
</tr>
</tbody>
</table>
Identification level usage of EML provides the minimum level to identify the data: Minimum content for adequate data set discovery in a general cataloging system or repository.

Discovery level usage includes Level 1 content plus coverage information to support targeted searches

Evaluation includes Level 2 content plus data set details to enable end-user evaluation of the methodology and data entities

Access level includes Level 3 content plus data access details to support automated data retrieval. Access in level 4 consists of access rules for the data file. There is a top-level (level 1) use of eml-access that refers to access rules to the metadata document.

Integration level includes Level 4 content plus complete attribute and quality control details to support computer-assisted data integration and re-sampling

ISO 19115:2003 is applicable to the cataloguing of datasets, clearinghouse activities, and the full description of datasets; geographic datasets, dataset series, and individual geographic features and feature properties.

ISO 19115:2003 defines: mandatory and conditional metadata sections, metadata entities, and metadata elements; the minimum set of metadata required to serve the full range of metadata applications (data discovery, determining data fitness for use, data access, data transfer, and use of digital data); optional metadata elements - to allow for a more extensive standard description of geographic data, if required; a method for extending metadata to fit specialized needs.

Though ISO 19115:2003 is applicable to digital data, its principles can be extended to many other forms of geographic data such as maps, charts, and textual documents as well as non-geographic data.

ISO 19115 metadata standard is made up of 14 top-level packages (ISO, 2003):

- Metadata entity set information: metadata container and contains metadata about metadata (metadata responsible party, creation date, language, identification and others)
- Identification information: basic information required to uniquely identify a resource
- Constraint information: restrictions on the access and use of a resource or metadata
- Data quality information: package contains a general assessment of the quality of the dataset
- Maintenance information: information about the scope and frequency of updating
- Spatial representation information (includes grid and vector representation): contains information concerning the mechanisms used to represent spatial information in a dataset
- Reference system information: contains the description of the spatial and temporal reference system(s) used in a dataset
• Content information: information identifying the feature catalogue used and/or information describing the content of a coverage dataset
• Portrayal catalogue information: contains information identifying the portrayal catalogue used
• Distribution information: contains information about the distributor of, and options for obtaining, a resource
• Metadata extension information: contains information about user specified metadata extensions
• Application schema information: contains information about the application schema used to build a dataset
• Extent information: contains information about the geographic, temporal and the vertical extent of the dataset
• Citation and responsible party information: contains information about the party responsible for dataset

4.2 INSPIRE metadata regulation overview

INSPIRE directive was established in 2007 and had to be transposed into EU member states legislation within 2 years. INSPIRE defines an infrastructure for spatial information in Europe, which consists from 5 components: spatial data, metadata, network services, data sharing and monitoring and reporting. For each abovementioned component EC approves commission regulations. Among others, metadata regulation has been approved in year 2008 and defines metadata elements to be included within the datasets and service description in order to be compliant with INSPIRE legal requirements. This regulation provides within its annex metadata implementing rules where each required metadata element is defined via its identification, name, description and obligation with multiplicity and condition.

INSPIRE metadata regulation is made up of 10 groups containing following elements:

• Identification - provides general identification information distributed via these metadata elements: Resource title, Resource type, Resource locator, Unique resource identifier, Coupled resource and Resource language
• Classification of spatial data and services – provides categorization of the resources via elements Topic category and Spatial data service type
• Keyword – provides further description by keywords with elements Keyword value and Originating controlled vocabulary
• Geographic location – provides spatial extent definition via element Geographic bounding box
• Temporal extent – provides temporal aspect definition either for temporal range via Temporal extent element or just a single date of an event within resource lifecycle via Date of publication, Date of last revision and Date of creation
• Quality and validity – provides summary information about resource quality via elements Lineage and Spatial resolution
• Conformity – provides information about conformity to particular implementing rules as well as the its degree via Specification and Degree elements
• Constraints related to access and use – provides a set of conditions applying to access and use and limitations on public access via Conditions applying to access and use and Limitations on public access elements
• Organizations responsible for the establishment, management, maintenance and distribution of spatial data sets and services – provides information about responsible
5 Metadata specification: Data Table

The following description of the metadata elements follows in major parts the description of the metadata elements as proposed by the EnVeurope project. This is due to the similarity of the data provided by long term monitoring and experiments.

The specification of the metadata elements is the basis for the implementation. Therefore many descriptions are similar to the EnVeurope report. Extended explanations if necessary are included in the description of the metadata elements.

In addition detailed descriptions of individual elements not covered in the EnVeurope metadata profile are given. In this case the metadata elements are separately marked.

Each metadata element may have more then one sub elements described within the element definition. Examples are given for both EML and ISO/Inspire. In most cases there is a one-to-one mapping between EML and ISO/Inspire, however, this is not always the case. In order to be able to produce valid metadata for both systems, the metadata entry tool may ask for information that is needed by one system, and not by the other. For example, Metadata Date is required by Inspire but is not an element in EML. EML has a method for creating custom structures (<additionalMetadata>) which will be used to provide this element. In other situations, EML may require something that Inspire does not. For example, EML requires a field of <altitudeUnits> while Inspire does not. In cases like that, the metadata entry tool will ask for <altitudeUnits> even though ISO/Inspire does not use this. In general, if Inspire requires an element that is not part of EML then an <additionalMetadata> element will be created to provide that information. Conversely, if EML requires something that is not part of Inspire, then the tool will not make a parallel structure for Inspire. In the case of individual parts of a concept such as geographic coverage, the two structures may not map directly. For example, Inspire incorporates the datum as part of any geographic reference. EML does not. No attempt would be made to create a custom geographic reference structure for EML to include datum information.

The core part of this specification provides list of the metadata elements to be implemented for each data set collected within the ExpeER data exchange system. Each metadata element is described in a tabular form and provides following details:

a) The name of metadata element
b) Basic definition given by EML\(^1\) specification and amended by ExpeER expert community
c) Obligation/condition for the metadata element (Required or Optional)
d) Multiplicity (Number of times an element may appear). Examples: 1 (only 1 and mandatory); 1..* (One required, more than one allowed); 0..* (Optional, but many allowed); 0..1 (optional, but only one allowed)
e) Corresponding metadata element in INSPIRE/EN ISO metadata model with reference\(^2\)

\(^1\) EML – Ecological Metadata Language - http://knb.ecoinformatics.org/software/eml/

\(^2\)
The following section provides a detailed discussion of the dataTable type. Neither ISO 19115 or ISO 19139 have elements that correspondence to dataTable. Other metadata elements are described in detail in the appended EnvEurope metadata specification. A data table is a logical entity with rows and columns and may have several different physical forms, for example: Excel spreadsheet, database table, database view, text file. DataTable metadata are required for data reuse. The key aspects of data table metadata are: attribute (column) names and definitions, and units. Without this information data cannot be reused. This information is necessary for data integration. Having this information does not guarantee that 2 or more datasets can be integrated (differences in sampling methodology or other differences may prevent integration).

The required elements of a dataTable type are: entityName and attributeList.

The required elements of the attribute list are: attribute name and definition, and measurementScale.

The elements of measurementScale are shown below. A measurement scale is a choice of nominal, ordinal, interval, ratio or dateTime.
6 Technical implementation of the MD System

In practical terms, a web-based metadata entry system will be used. This system is adapted from one developed by the US-LTER and further developed within the EnvEurope project. It has been modified to meet the needs of INSPIRE and follows the EnvEurope community profile. A separate instance of the DEIMS (Drupal based Ecological Information Management System) will provided in the runtime of the ExpeER project. The tool will produce both EML and INSPIRE compliant XML documents directly. The eml documents can be harvested by a Metacat server to be made available as part of DataOne. The INSPIRE compliant metadata will be able to be consumed by geoportal services.

The following is an example dataTable fragment of an EML document:

```
<dataTable>
<entityName>VCR05118</entityName>
<entityDescription>1996 Parramore Permanent Plot Resurvey: Subplot data</entityDescription>
<physical>
<objectName>96subplots.csv</objectName>
<characterEncoding>ASCII</characterEncoding>
<dataFormat>
  <textFormat>
    <numHeaderLines>1</numHeaderLines>
    <numFooterLines>0</numFooterLines>
    <recordDelimiter>
      
    </recordDelimiter>
    <physicalLineDelimiter>
      
    </physicalLineDelimiter>
    <attributeOrientation>
      column
    </attributeOrientation>
    <simpleDelimited>
      
    </simpleDelimited>
    <fieldDelimiter>,</fieldDelimiter>
    <quoteCharacter>"</quoteCharacter>
    <literalCharacter>{}</literalCharacter>
  </simpleDelimited>
</textFormat>
</dataFormat>
<distribution>
<online>
  <url function="download">http://metacat.lternet.edu/das/dataAccessServlet?docid=knb-lter-vcr.94.10&urlTail=1/VCR05118/VCR05118/96subplots.csv</url>
</online>
<access authSystem="knb" order="allowFirst">
  <allow>
    <principal>public</principal>
    <permission>read</permission>
  </allow>
  <allow>
    <principal>uid=VCR,o=lter,dc=ecoinformatics,dc=org</principal>
    <permission>all</permission>
  </allow>
</access>
```
<attributeList>
 <attribute id="VCR05118.PLOT_N">
 <attributeName>PLOT_N</attributeName>
 <attributeLabel>plot number</attributeLabel>
 <attributeDefinition>PLOT_N - plot number</attributeDefinition>
 <storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
 </attribute>
 <attribute id="VCR05118.SUBPLOT">
 <attributeName>SUBPLOT</attributeName>
 <attributeLabel>subplot number</attributeLabel>
 <attributeDefinition>SUBPLOT - subplot number</attributeDefinition>
 <storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
 </attribute>
</attributeList>
<attributeName>SESSION</attributeName>
<attributeLabel>session (visit) number</attributeLabel>
<attributeDefinition>SESSION - session (visit) number</attributeDefinition>
<storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
<measurementScale>
 <nominal>
 <nonNumericDomain>
 <textDomain>
 <definition>session (visit) number</definition>
 </textDomain>
 </nonNumericDomain>
 </nominal>
 </measurementScale>
</attribute>

<attribute id="VCR05118.AZIMUTH">
<attributeName>AZIMUTH</attributeName>
<attributeLabel>azimuth from plot center</attributeLabel>
<attributeDefinition>AZIMUTH - azimuth from plot center</attributeDefinition>
<storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
<measurementScale>
 <nominal>
 <nonNumericDomain>
 <textDomain>
 <definition>azimuth from plot center</definition>
 </textDomain>
 </nonNumericDomain>
 </nominal>
 </measurementScale>
 <missingValueCode>
 <code>.</code>
 <codeExplanation>missing</codeExplanation>
 </missingValueCode>
</attribute>

<attribute id="VCR05118.DIST">
<attributeName>DIST</attributeName>
<attributeLabel>distance from plot center (to nearest 1 m)</attributeLabel>
<attributeDefinition>DIST - distance from plot center (to nearest 1 m)</attributeDefinition>
<storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
<measurementScale>
 <nominal>
 <nonNumericDomain>
 <textDomain>
 </textDomain>
 </nonNumericDomain>
 </nominal>
</measurementScale>
</attribute>
<definition>distance from plot center (to nearest 1 m)</definition>

<attribute id="VCR05118.CREKDIS">
 <attributeName>CREKDIS</attributeName>
 <attributeLabel>shortest distance to the nearest creekbank from subplot</attributeLabel>
 <attributeDefinition>CREKDIS - shortest distance to the nearest creekbank from subplot</attributeDefinition>
 <storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">float</storageType>
 <measurementScale>
 <nominal>
 <nonNumericDomain>
 <textDomain>
 <definition>shortest distance to the nearest creekbank from subplot</definition>
 </textDomain>
 </nonNumericDomain>
 </nominal>
 </measurementScale>
 <missingValueCode>
 <code>.</code>
 <codeExplanation>missing</codeExplanation>
 </missingValueCode>
</attribute>

<attribute id="VCR05118.CEPTDBH">
 <attributeName>CEPTDBH</attributeName>
 <attributeLabel>PAR ceptometer reading at Breast Height</attributeLabel>
 <attributeDefinition>CEPTDBH - PAR ceptometer reading at Breast Height</attributeDefinition>
 <storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
 <measurementScale>
 <nominal>
 <nonNumericDomain>
 <textDomain>
 <definition>PAR ceptometer reading at Breast Height</definition>
 </textDomain>
 </nonNumericDomain>
 </nominal>
 </measurementScale>
 <missingValueCode>
 <code>.</code>
 <codeExplanation>missing</codeExplanation>
 </missingValueCode>
</attribute>
</nonNumericDomain>
</nominal>
</measurementScale>
<missingValueCode>
<code>.</code>
<codeExplanation>missing</codeExplanation>
</missingValueCode>
</attribute>
<attribute id="VCR05118.CEPT20">
<attributeName>CEPT20</attributeName>
<attributeLabel>PAR ceptometer reading at 20cm above ground/water level</attributeLabel>
<attributeDefinition>CEPT20 - PAR ceptometer reading at 20cm above ground/water level</attributeDefinition>
<storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
<measurementScale>
<nominal>
<nonNumericDomain>
<textDomain>
<definition>PAR ceptometer reading at 20cm above ground/water level</definition>
</textDomain>
</nonNumericDomain>
</nominal>
</measurementScale>
<missingValueCode>
<code>.</code>
<codeExplanation>missing</codeExplanation>
</missingValueCode>
</attribute>
<attribute id="VCR05118.CEPTOPN">
<attributeName>CEPTOPN</attributeName>
<attributeLabel>open sun PAR ceptometer reading</attributeLabel>
<attributeDefinition>CEPTOPN - open sun PAR ceptometer reading</attributeDefinition>
<storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
<measurementScale>
<nominal>
<nonNumericDomain>
<textDomain>
<definition>open sun PAR ceptometer reading</definition>
</textDomain>
</nonNumericDomain>
</nominal>
<measurementScale>
 <missingValueCode>
 <code>.</code>
 <codeExplanation>missing</codeExplanation>
 </missingValueCode>
</measurementScale>

<attribute id="VCR05118.CPTTIME">
 <attributeName>CPTTIME</attributeName>
 <attributeLabel>time of ceptometer readings</attributeLabel>
 <attributeDefinition>CPTTIME - time of ceptometer readings</attributeDefinition>
 <storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">string</storageType>
 <measurementScale>
 <nominal>
 <nonNumericDomain>
 <textDomain>
 <definition>time of ceptometer readings</definition>
 </textDomain>
 </nonNumericDomain>
 </nominal>
 </measurementScale>
 <missingValueCode>
 <code>.</code>
 <codeExplanation>missing</codeExplanation>
 </missingValueCode>
</attribute>

<attribute id="VCR05118.SPPPRES">
 <attributeName>SPPPRES</attributeName>
 <attributeLabel>list of species ID codes for the dominant species present</attributeLabel>
 <attributeDefinition>SPPPRES - list of species ID codes for the dominant species present</attributeDefinition>
 <storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">string</storageType>
 <measurementScale>
 <nominal>
 <nonNumericDomain>
 <textDomain>
 <definition>list of species ID codes for the dominant species present</definition>
 </textDomain>
 </nonNumericDomain>
 </nominal>
 </measurementScale>
 <missingValueCode>
 <code>.</code>
 <codeExplanation>missing</codeExplanation>
 </missingValueCode>
</attribute>
<codeExplanation>missing</codeExplanation>
</missingValueCode>
</attribute>
<attribute id="VCR05118.BARE_IN">
 <attributeName>BARE_IN</attributeName>
 <attributeLabel>"inner" BARREN ground cover point count (out of 20)</attributeLabel>
 <attributeDefinition>BARE_IN - "inner" BARREN ground cover point count (out of 20)</attributeDefinition>
 <storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
 <measurementScale>
 <nominal>
 <nonNumericDomain>
 <textDomain>
 <definition>"inner" BARREN ground cover point count (out of 20)</definition>
 </textDomain>
 </nonNumericDomain>
 </nominal>
 </measurementScale>
 <missingValueCode>
 <code>.,</code>
 <codeExplanation>missing</codeExplanation>
 </missingValueCode>
</attribute>
<attribute id="VCR05118.BARE_ON">
 <attributeName>BARE_ON</attributeName>
 <attributeLabel>"outer" BARREN ground cover point count (out of 20)</attributeLabel>
 <attributeDefinition>BARE_ON - "outer" BARREN ground cover point count (out of 20)</attributeDefinition>
 <storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
 <measurementScale>
 <nominal>
 <nonNumericDomain>
 <textDomain>
 <definition>"outer" BARREN ground cover point count (out of 20)</definition>
 </textDomain>
 </nonNumericDomain>
 </nominal>
 </measurementScale>
 <missingValueCode>
 <code>.,</code>
 <codeExplanation>missing</codeExplanation>
 </missingValueCode>
<attributeName>GRAS_IN</attributeName>
<attributeLabel>"inner" GRASS ground cover point count (out of 20)</attributeLabel>
<attributeDefinition>GRAS_IN - "inner" GRASS ground cover point count (out of 20)</attributeDefinition>
<storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
<measurementScale>
 <nominal>
 <nonNumericDomain>
 <textDomain>
 <definition>"inner" GRASS ground cover point count (out of 20)</definition>
 </textDomain>
 </nonNumericDomain>
 </nominal>
</measurementScale>
<missingValueCode>
 <code>.</code>
 <codeExplanations>missing</codeExplanations>
</missingValueCode>
</attribute>

<attribute id="VCR05118.GRAS.ON">
 <attributeName>GRAS_ON</attributeName>
 <attributeLabel>"outer" GRASS ground cover point count (out of 20)</attributeLabel>
 <attributeDefinition>GRAS_ON - "outer" GRASS ground cover point count (out of 20)</attributeDefinition>
 <storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
 <measurementScale>
 <nominal>
 <nonNumericDomain>
 <textDomain>
 <definition>"outer" GRASS ground cover point count (out of 20)</definition>
 </textDomain>
 </nonNumericDomain>
 </nominal>
 </measurementScale>
 <missingValueCode>
 <code>.</code>
 <codeExplanations>missing</codeExplanations>
 </missingValueCode>
</attribute>

<attribute id="VCR05118.GRAS.IH">
 <attributeName>GRAS_IH</attributeName>
 <attributeLabel>"inner" GRASS average height (to nearest 5 or 10cm)</attributeLabel>
 <attributeDefinition>GRAS_IH - "inner" GRASS average height (to nearest 5 or 10cm)</attributeDefinition>
 <storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
 <measurementScale>
 <nominal>
 <nonNumericDomain>
 <textDomain>
 <definition>"inner" GRASS average height (to nearest 5 or 10cm)</definition>
 </textDomain>
 </nonNumericDomain>
 </nominal>
 </measurementScale>
 <missingValueCode>
 <code>.</code>
 </missingValueCode>
</attribute>
<storageType urisystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType> <measurementScale> <nonNumericDomain> <textDomain> <definition>"inner" GRASS average height (to nearest 5 or 10cm)</definition> </textDomain> </nonNumericDomain> </nominal> </measurementScale> <missingValueCode> <code>.</code> </missingValueCode> </attribute> <attribute id="VCR05118.GRAS_OH"> <attributeName>GRAS_OH</attributeName> <attributeLabel>"outer" GRASS average height (to nearest 5 or 10cm)</attributeLabel> <attributeDefinition>GRAS_OH - "outer" GRASS average height (to nearest 5 or 10cm)</attributeDefinition> <storageType urisystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType> <measurementScale> <nominal> <nonNumericDomain> <textDomain> <definition>"outer" GRASS average height (to nearest 5 or 10cm)</definition> </textDomain> </nonNumericDomain> </nominal> </measurementScale> <missingValueCode> <code>.</code> </missingValueCode> </attribute> <attribute id="VCR05118.REED_IN"> <attributeName>REED_IN</attributeName> <attributeLabel>"inner" REED ground cover point count (out of 20)</attributeLabel> <attributeDefinition>REED_IN - "inner" REED ground cover point count (out of 20)</attributeDefinition> <storageType urisystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
ExpeER - FP7 - 262060/ Data Management and policy

<measurementScale>
 <nominal>
 <nonNumericDomain>
 <textDomain>
 <definition>"inner" REED ground cover point count (out of 20)</definition>
 </textDomain>
 </nonNumericDomain>
 </nominal>
</measurementScale>
<missingValueCode>
 <code>.</code>
</missingValueCode>
</attribute>

<attribute id="VCR05118.REED_ON">
 <attributeName>REED_ON</attributeName>
 <attributeLabel>"outer" REED ground cover point count (out of 20)</attributeLabel>
 <attributeDefinition>REED_ON - "outer" REED ground cover point count (out of 20)</attributeDefinition>
 <storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
</attribute>

<measurementScale>
 <nominal>
 <nonNumericDomain>
 <textDomain>
 <definition>"outer" REED ground cover point count (out of 20)</definition>
 </textDomain>
 </nonNumericDomain>
 </nominal>
</measurementScale>
<missingValueCode>
 <code>.</code>
</missingValueCode>
</attribute>

<attribute id="VCR05118.REED_IH">
 <attributeName>REED_IH</attributeName>
 <attributeLabel>"inner" REED average height (to nearest 5 or 10cm)</attributeLabel>
 <attributeDefinition>REED_IH - "inner" REED average height (to nearest 5 or 10cm)</attributeDefinition>
 <storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
</attribute>

<measurementScale>
 <nominal>
 <nonNumericDomain>
 <textDomain>
 </textDomain>
 </nonNumericDomain>
 </nominal>
</measurementScale>
<missingValueCode>
 <code>.</code>
</missingValueCode>
</attribute>

<attribute id="VCR05118.REED_TP">
 <attributeName>REED_TP</attributeName>
 <attributeLabel>"outer" REED average height (to nearest 5 or 10cm)</attributeLabel>
 <attributeDefinition>REED_TP - "outer" REED average height (to nearest 5 or 10cm)</attributeDefinition>
 <storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
</attribute>

<measurementScale>
 <nominal>
 <nonNumericDomain>
 <textDomain>
 </textDomain>
 </nonNumericDomain>
 </nominal>
</measurementScale>
<missingValueCode>
 <code>.</code>
</missingValueCode>
</attribute>

<attribute id="VCR05118.REED_TP">
 <attributeName>REED_TP</attributeName>
 <attributeLabel>"outer" REED average height (to nearest 5 or 10cm)</attributeLabel>
 <attributeDefinition>REED_TP - "outer" REED average height (to nearest 5 or 10cm)</attributeDefinition>
 <storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
</attribute>
<definition>"inner" REED average height (to nearest 5 or 10cm)</definition>
</textDomain>
</nominal>
</measurementScale>
<missingValueCode>
<code>.</code>
</missingValueCode>
</attribute>
<attribute id="VCR05118.REED_OH">
<attributeName>REED_OH</attributeName>
<attributeLabel>"outer" REED average height (to nearest 5 or 10cm)</attributeLabel>
<attributeDefinition>REED_OH - "outer" REED average height (to nearest 5 or 10cm)</attributeDefinition>
<storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
<measurementScale>
<nominal>
 <nonNumericDomain>
 <textDomain>
 <definition>"outer" REED average height (to nearest 5 or 10cm)</definition>
 </textDomain>
 </nominal>
</measurementScale>
<missingValueCode>
<code>.</code>
</missingValueCode>
</attribute>
<attribute id="VCR05118.HERB_IN">
<attributeName>HERB_IN</attributeName>
<attributeLabel>"inner" HERBACEOUS ground cover point count (out of 20)</attributeLabel>
<attributeDefinition>HERB_IN - "inner" HERBACEOUS ground cover point count (out of 20)</attributeDefinition>
<storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
<measurementScale>
<nominal>
 <nonNumericDomain>
 <textDomain>
 <definition>"inner" HERBACEOUS ground cover point count (out of 20)</definition>
 </textDomain>
 </nominal>
</measurementScale>
<missingValueCode>
<code>.</code>
</missingValueCode>
</attribute>
</nonNumericDomain>
</nominal>
</measurementScale>
<missingValueCode>
<code>.
</code>
<codeExplanation>missing</codeExplanation>
</missingValueCode>
</attribute>
<attribute id="VCR05118.HERB_ON">
<attributeName>HERB_ON</attributeName>
<attributeLabel>"outer" HERBACEOUS ground cover point count (out of 20)</attributeLabel>
<attributeDefinition>HERB_ON - "outer" HERBACEOUS ground cover point count (out of 20)</attributeDefinition>
<storageType datatypes">integer</storageType>
<measurementScale>
<nominal>
<nonNumericDomain>
<textDomain>
<definition>"outer" HERBACEOUS ground cover point count (out of 20)</definition>
</textDomain>
</nonNumericDomain>
</nominal>
</measurementScale>
<missingValueCode>
<code>.
</code>
<codeExplanation>missing</codeExplanation>
</missingValueCode>
</attribute>
<attribute id="VCR05118.HERB_IH">
<attributeName>HERB_IH</attributeName>
<attributeLabel>"inner" HERBACEOUS average height (to nearest 5 or 10cm)</attributeLabel>
<attributeDefinition>HERB_IH - "inner" HERBACEOUS average height (to nearest 5 or 10cm)</attributeDefinition>
<storageType datatypes">integer</storageType>
<measurementScale>
<nominal>
<nonNumericDomain>
<textDomain>
<definition>"inner" HERBACEOUS average height (to nearest 5 or 10cm)</definition>
</textDomain>
</nonNumericDomain>
</nominal>
</measurementScale>
<missingValueCode>
<code>.
</code>
<codeExplanation>missing</codeExplanation>
</missingValueCode>
</attribute>

<attribute id="VCR05118.HERB_OH">
 <attributeName>HERB_OH</attributeName>
 <attributeLabel>"outer" HERBACEOUS average height (to nearest 5 or 10cm)</attributeLabel>
 <attributeDefinition>HERB_OH - "outer" HERBACEOUS average height (to nearest 5 or 10cm)</attributeDefinition>
</attribute>

<attribute id="VCR05118.VINE_IN">
 <attributeName>VINE_IN</attributeName>
 <attributeLabel>"inner" VINE ground cover point count (out of 20)</attributeLabel>
 <attributeDefinition>VINE_IN - "inner" VINE ground cover point count (out of 20)</attributeDefinition>
</attribute>
<measurementScale>
<missingValueCode>
<code>.
<codeExplanation>missing</codeExplanation>
</missingValueCode>
</measurementScale>

<attribute id="VCR05118.VINE_ON">
<attributeName>VINE_ON</attributeName>
<attributeLabel>"outer" VINE ground cover point count (out of 20)</attributeLabel>
<attributeDefinition>VINE_ON - "outer" VINE ground cover point count (out of 20)</attributeDefinition>
<storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
<measurementScale>
<nominal>
<nonNumericDomain>
<textDomain>
<definition>"outer" VINE ground cover point count (out of 20)</definition>
</textDomain>
</nonNumericDomain>
</nominal>
</measurementScale>
<missingValueCode>
<code>.
<codeExplanation>missing</codeExplanation>
</missingValueCode>
</attribute>

<attribute id="VCR05118.VINE_IH">
<attributeName>VINE_IH</attributeName>
<attributeLabel>"inner" VINE average height (to nearest 5 or 10cm)</attributeLabel>
<attributeDefinition>VINE_IH - "inner" VINE average height (to nearest 5 or 10cm)</attributeDefinition>
<storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
<measurementScale>
<nominal>
<nonNumericDomain>
<textDomain>
<definition>"inner" VINE average height (to nearest 5 or 10cm)</definition>
</textDomain>
</nonNumericDomain>
</nominal>
</measurementScale>
<missingValueCode>
<code>.
<codeExplanation>missing</codeExplanation>
</missingValueCode>
</attribute>
<attributeName>WOOD_ON</attributeName>
<attributeLabel>"outer" WOODY ground cover point count (out of 20)</attributeLabel>
<attributeDefinition>WOOD_ON - "outer" WOODY ground cover point count (out of 20)</attributeDefinition>
<storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
<messageScale>
<nominal>
 <nonNumericDomain>
 <textDomain>
 <definition>"outer" WOODY ground cover point count (out of 20)</definition>
 </textDomain>
 </nonNumericDomain>
 </nominal>
</messageScale>
<missingValueCode>
<code></code>
<codeExplanation>missing</codeExplanation>
</missingValueCode>

<attribute id="VCR05118.WOOD_IH">
<attributeName>WOOD_IH</attributeName>
<attributeLabel>"inner" WOODY average height (to nearest 5 or 10cm)</attributeLabel>
<attributeDefinition>WOOD_IH - "inner" WOODY average height (to nearest 5 or 10cm)</attributeDefinition>
<storageType typeSystem="http://www.w3.org/2001/XMLSchema-datatypes">integer</storageType>
<messageScale>
<nominal>
 <nonNumericDomain>
 <textDomain>
 <definition>"inner" WOODY average height (to nearest 5 or 10cm)</definition>
 </textDomain>
 </nonNumericDomain>
 </nominal>
</messageScale>
<missingValueCode>
<code></code>
<codeExplanation>missing</codeExplanation>
</missingValueCode>
</attribute>
<attribute id="VCR05118.WOOD_OH">
<attributeName>WOOD_OH</attributeName>
<attributeLabel>"outer" WOODY average height (to nearest 5 or
10cm)</attributeLabel>
<attributeDefinition>WOOD_OH - "outer" WOODY average height (to nearest 5 or 10cm)</attributeDefinition>
<storageType>integer</storageType>
<measurementScale>
<nominal>
 <nonNumericDomain>
 <textDomain>
 <definition>"outer" WOODY average height (to nearest 5 or 10cm)</definition>
 </textDomain>
 </nonNumericDomain>
</nominal>
</measurementScale>
<missingValueCode>
 <code>\</code>
 <codeExplanation>missing</codeExplanation>
</missingValueCode>
</attribute>
</attributeList>
</dataTable>

7 Acknowledgments and Contact

This metadata specification could not have been developed without the valuable and fruitful help and contribution of some members from the working groups within the ExpeER and EnvEurope (LIFE08 ENV/IT/000339) project, and other LTER-Europe and International LTER project involvements. Moreover technical and moral support from other colleagues coming from the US-LTER and NCEAS is appreciated. Therefore we would like to thank them all for their contribution.

Contact information:

David Blankman - Editor
Ben Gurion University
Beer Sheva, Israel
E-mail: dblankman1@gmail.com
Tel: +972 77-442-1951
Tel (mobile): +972 54 685-9345
8 APPENDIX 1: Validation by ExpeER partners

Final version of the Deliverable 3.1 Data policy and guidelines and D3.2 ExpeER metadata standard for dataset level have been uploaded to the ExpeER website in April 2012, the links to the deliverables in the website have been sent to all ExpeER participant via the internal bulletin in April 2012 as well. A deadline (17 May) was set to receive feedback and comments. No comments were received. To ensure the validation of these deliverables by each ExpeER partner, an individual email was sent to all ExpeER partner to ask for feedback by 15 June. After this deadline, principle contacts of each ExpeER partner were asked to send an email of validation to the project manager by 27 June. They were asked to use the following format:

I have read and agree to the following ExpeER deliverables : D3.1 “ExpeER data policy and guidelines” and D3.2 “ExpeER Metadata standard for dataset level”. I confirm that they comply with the data management of (name of the organization).

Here is the list of ExpeER partners whose confirmation email were received till the submission of this deliverable.

<table>
<thead>
<tr>
<th>Partner no.</th>
<th>Short name</th>
<th>Country</th>
<th>Confirmation to validate D3.1 D3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>BFW</td>
<td>Austria</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>BGU</td>
<td>Israel</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>Bioforsk</td>
<td>Norway</td>
<td>yes</td>
</tr>
<tr>
<td>7</td>
<td>CSIC</td>
<td>Spain</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>DTU</td>
<td>Denmark</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>ERCE</td>
<td>Poland</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td>FSU JENA</td>
<td>Germany</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>MTA ÓK</td>
<td>Hungary</td>
<td>yes</td>
</tr>
<tr>
<td>15</td>
<td>Imperial</td>
<td>UK</td>
<td>only for D3.1 so far</td>
</tr>
<tr>
<td>17</td>
<td>Jülich</td>
<td>Germany</td>
<td>yes</td>
</tr>
<tr>
<td>18</td>
<td>KIT</td>
<td>Germany</td>
<td>yes</td>
</tr>
<tr>
<td>21</td>
<td>Rothamsted Research</td>
<td>UK</td>
<td>ask for amendment in D3.1</td>
</tr>
<tr>
<td>23</td>
<td>SOTON</td>
<td>UK</td>
<td>yes</td>
</tr>
<tr>
<td>24</td>
<td>SYKE</td>
<td>Finland</td>
<td>yes</td>
</tr>
<tr>
<td>25</td>
<td>TUM</td>
<td>Germany</td>
<td>yes</td>
</tr>
<tr>
<td>26</td>
<td>UA</td>
<td>Belgium</td>
<td>yes</td>
</tr>
<tr>
<td>27</td>
<td>UB</td>
<td>Romania</td>
<td>yes</td>
</tr>
<tr>
<td>28</td>
<td>UFZ</td>
<td>Germany</td>
<td>yes</td>
</tr>
<tr>
<td>Partner n°</td>
<td>Short name</td>
<td>Country</td>
<td>Confirmation to validate D3.1 D3.2</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>29</td>
<td>UHEL</td>
<td>Finland</td>
<td>yes</td>
</tr>
<tr>
<td>30</td>
<td>ULUND</td>
<td>Sweden</td>
<td>yes</td>
</tr>
<tr>
<td>31</td>
<td>UNITO</td>
<td>Italy</td>
<td>yes</td>
</tr>
<tr>
<td>32</td>
<td>UNIUD</td>
<td>Italy</td>
<td>yes</td>
</tr>
<tr>
<td>33</td>
<td>UNIVLEEDS</td>
<td>UK</td>
<td>yes</td>
</tr>
<tr>
<td>34</td>
<td>UNS</td>
<td>Serbia</td>
<td>yes</td>
</tr>
<tr>
<td>36</td>
<td>VUA</td>
<td>The Netherlands</td>
<td>yes</td>
</tr>
</tbody>
</table>

9 APPENDIX 2: ENVEurope Metadata Specification - attached
APPENDIX 2:

EnvEurope (LTER-Europe) Metadata Specification for Dataset Level

Deliverable number A.1.1.2b
Delivery date 12/2011
Status Final draft v2.0
Authors Tomas Kliment, Alessandro Oggioni

With the contribution of the LIFE financial instrument of the European Community

ENVeurope © 2010-2014 Life Environent Project LIFE08 ENV/IT/000339.
<table>
<thead>
<tr>
<th>Title</th>
<th>EnvEurope (LTER-Europe) Metadata Specification for Dataset Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creator</td>
<td>Tomas Kliment (CNR-ISMAR), Alessandro Oggioni (CNR-ISE)</td>
</tr>
<tr>
<td>Creation date</td>
<td>24/03/2011</td>
</tr>
<tr>
<td>Date of last revision</td>
<td>13/05/2012</td>
</tr>
<tr>
<td>Publisher</td>
<td>EnvEurope project</td>
</tr>
<tr>
<td>Type</td>
<td>Text, pasted XML files</td>
</tr>
<tr>
<td>Description</td>
<td>This document describes the community EnvEurope (LTER – Europe) metadata profile for the dataset for the European Long-Term Ecosystem Research Network within the scope of the EnvEurope project based on EML (Ecological Metadata Language) specification. Moreover a detail description of metadata crosswalk between EML specification and EN ISO 19115:2005 Geographic information - Metadata (ISO 19115:2003) with specific constraints defined in INSPIRE metadata regulation is included together with XML metadata examples, XSLT transformation file and metadata validation report.</td>
</tr>
<tr>
<td>Contributor</td>
<td>Paola Carrara (CNR-IREA), Johannes Peterseil (UBA), Monica Pepe (CNR-IREA), David Blankman (ILTER), Pirjo Kuitunen (LTER-Europe)</td>
</tr>
<tr>
<td>Revised by</td>
<td>Johannes Peterseil (UBA), Alessandra Pugneti (CNR-ISMAR)</td>
</tr>
<tr>
<td>Format</td>
<td>Doc</td>
</tr>
<tr>
<td>Source</td>
<td>http://www.enveurope.eu</td>
</tr>
<tr>
<td>Rights</td>
<td>Restricted Public</td>
</tr>
<tr>
<td>Identifier</td>
<td>EnvEurope_MD_Specification_FinalDraft_v2.0.doc</td>
</tr>
<tr>
<td>Language</td>
<td>En</td>
</tr>
<tr>
<td>Relation</td>
<td></td>
</tr>
<tr>
<td>Coverage</td>
<td>Project duration</td>
</tr>
</tbody>
</table>

These are Dublin Core metadata elements. See for more details and examples http://www.dublincore.org/
Acknowledgments

This metadata specification could not have been developed without the valuable and fruitful help and contribution of some members from the working groups (actions) within the EnvEurope project, and other LTER-Europe project involvements. Moreover technical and moral support from other colleagues coming from International LTER network is more than appreciated. Therefore we would like to thank them all for their contribution.

Contact information:
Tomas Kliment – Editor
Italian National Research Council – Institute of Marine Sciences (CNR-ISMAR)
Arsenale – Tesa n. 104
Castello 2737/F – 30122 Venice
Italy
E-mail: tomas.kliment@gmail.com
Tel +39 041 2407926
Fax +39 041 2407940

Alessandro Oggioni – Editor
Italian National Research Council - Institute of Ecosystem Study (CNR-ISE)
Largo Tonolli 50
28922, Verbania-Pallanza VB
Italy
E-mail: a.oggioni@ise.cnr.it
Tel +39 0323 518 300
Fax +39 0323 556 513
Table of contents

Contenu

1 Introduction .. 6
2 Normative references .. 8
3 Terms and definitions .. 9
 3.1 Dataset .. 9
 3.2 EML or Ecological Metadata Language ... 9
 3.3 EPSG ... 9
 3.4 EUNIS .. 9
 3.5 GEMET or GEneral Multilingual Environmental Thesaurus ... 9
 3.6 Infrastructure for spatial information (ISI) in Europe ... 10
 3.7 INSPIRE ... 10
 3.8 INSPIRE themes .. 10
 3.9 LTER-Europe Community ... 10
 3.10 Metadata .. 10
 3.11 NaturaSDI+ ... 10
 3.12 Thesaurus .. 10
 3.13 UID or Unique Identifier ... 10
 3.14 URI or Uniform Resource Identifier .. 10
 3.15 URL or Uniform Resource Locator .. 10
 3.16 Web Service ... 11
 3.17 XML or Extensible Markup Language ... 11
4 Symbol and abbreviated terms .. 12
5 Metadata specification .. 13
 5.1 Dataset title ... 13
 5.2 Dataset identifier .. 13
 5.3 Dataset creator and contact points .. 14
 5.4 Metadata provider .. 15
 5.5 Metadata date ... 16
 5.6 Dataset publication date ... 17
 5.7 Dataset language ... 18
 5.8 Dataset abstract .. 18
 5.9 Dataset keyword set ... 19
 5.10 Dataset access and use constraints .. 21
 5.11 Dataset intellectual rights ... 22
 5.12 Dataset online distribution ... 24
 5.13 Dataset geographic bounding coordinates .. 24
 5.14 Dataset geographic bounding altitudes ... 25
 5.15 Dataset temporal extent .. 26
 5.16 Dataset taxonomic coverage .. 27

appendix 2
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.17</td>
<td>Dataset methods description</td>
<td>28</td>
</tr>
<tr>
<td>5.18</td>
<td>Dataset instrumentation description</td>
<td>29</td>
</tr>
<tr>
<td>5.19</td>
<td>Dataset sampling description</td>
<td>29</td>
</tr>
<tr>
<td>5.20</td>
<td>Dataset legal obligation reporting</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>EnvEurope (EML) metadata crosswalk to the INSPIRE (EN ISO) metadata profile</td>
<td>32</td>
</tr>
<tr>
<td>6.1</td>
<td>Ecological Metadata Language (EML) Specification overview</td>
<td>32</td>
</tr>
<tr>
<td>6.3</td>
<td>INSPIRE metadata regulation overview</td>
<td>34</td>
</tr>
<tr>
<td>6.4</td>
<td>Metadata crosswalk step 1 - harmonization</td>
<td>35</td>
</tr>
<tr>
<td>6.5</td>
<td>Metadata crosswalk step 2 - semantic mapping</td>
<td>36</td>
</tr>
<tr>
<td>6.6</td>
<td>Metadata crosswalk step 3 - additional rules</td>
<td>37</td>
</tr>
<tr>
<td>6.7</td>
<td>Metadata crosswalk step 4 - implementation</td>
<td>37</td>
</tr>
<tr>
<td>7</td>
<td>References</td>
<td>39</td>
</tr>
<tr>
<td>Annex I</td>
<td>An example of EnvEurope (EML) metadata record coded in XML</td>
<td>40</td>
</tr>
<tr>
<td>Annex II</td>
<td>EnvEurope (EML) metadata record transformed to INSPIRE (EN ISO) compliant metadata record</td>
<td>45</td>
</tr>
<tr>
<td>Annex III</td>
<td>Metadata validation report against INSPIRE and ISO</td>
<td>57</td>
</tr>
<tr>
<td>Annex IV</td>
<td>XSLT transformation file</td>
<td>59</td>
</tr>
<tr>
<td>Annex V</td>
<td>MapForce mapping report EML2ISO</td>
<td>86</td>
</tr>
</tbody>
</table>
1 Introduction

This document defines the metadata specification, which has been developed for the EnvEurope project for dataset level description. The document corresponds to the Action 1 deliverable: Data collection and management, sub-action 1.1 Metadata collection and more specifically task A.1.1.2b Adapt dataset level metadata model.

This document provides a list of the metadata elements necessary for the description of resources collected within the LTER-Europe domain (European Long-Term Ecosystem Research Network) on the dataset level. The EnvEurope project does not include all of the LTER-Europe community (about 400 research sites). However it intends to provide standards and guidelines for the entire LTER - Europe network based on the experience gained within a group of actively involved representative beneficiaries (about 67 research sites from 11 European countries). The metadata standard has been defined as a result of user requirements exercises performed within the target stakeholder groups. The user requirements for content were then compared with the INSPIRE and Ecological Metadata Language (EML) metadata specifications. Moreover many consultations with the experts from the project advisory board, involved beneficiaries, or other related projects (EXPEER1) have supported the final definition of this metadata specification.

The general objective of this metadata specification is to provide list of elements defined as important for data exchange in the LTER-Europe community. By data exchange we mean data discovery, evaluation and use. This specification intends to cover all three levels of metadata (discovery, evaluation, synthesis); however, the primary focus is devoted to discovery and evaluation levels. In other words it focuses on those content area that will allow for the discovery of data that would potentially be useful for meta-analysis or or other synthetic activities, and to perform a preliminary evaluation of the suitability of the the dataset for further analysis or synthesis. The recommended metadata standard does not contain sufficient elements for synthesis. One of the most important elements that would be necessary for synthesis is completely filled out dataTable and attributeList. For EnvEurope specific datasets, this metadata will be filled out automatically since the metadata would be standard. For legacy data or for research that is not part of the EnvEurope standard data format, this information would be required in order to perform a synthesis or meta-analysis.

In addition, this metadata specification aims to ensure feasible interoperability level also with other levels of LTER network. The US LTER (United States Long Term Ecological Research) network adopted EML as its metadata standard in 2003. The International LTER officially adopted EML in 2008. has been taken into consideration regarding the data management approach that has been used since longer time. Therefore an EML specification has been defined as a reference metadata standard for the EnvEurope metadata profile. It is intended that EML compliant EnvEurope metadata documents in will be exported into the LTER-Europe Metacat. The LTER-Europe metacat server will be a DataOne node https://www.dataone.org/ when DataOne becomes operational. As of 15 January 2012 there were over 25,000 EML documents in the KNB data network http://knb.ecoinformatics.org/ (precursor of DataOne) of which over 7,000 are from the US-LTER.

This metadata specification has also the requirement to provide metadata from the LTER Europe domain to the European Spatial Data Infrastructure defined by INSPIRE directive framework on the data themes to support policy makers decisions within the ecological domain. To fulfil this goal a metadata crosswalk between the EnvEurope metadata (EML) and INSPIRE metadata defined by Commission Regulation (EC) No 1205/2008 of 3 December 2008 implementing Directive 2007/2/EC of the European Parliament and of the Council as regards metadata2 (based on EN ISO 19115:2005 Geographic information – Metadata) has been developed. More details about this part are described in

1 http://www.expeeronline.eu/
2 http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32008R1205:EN:NOT

The core part of this specification (chapter 5) provides list of the metadata elements to be implemented for each dataset collected within the EnvEurope data exchange system. Each metadata element is described in a tabular form and provides following details:

13. The name of EnvEurope metadata element
14. Basic definition given by EML specification and amended by EnvEurope expert community
15. Obligation/condition for the metadata element (Required or Optional)
16. Multiplicity (Number of times an element may appear). Examples: 1 (only 1 and mandatory); 1..* (one required, more than one allowed); 0..* (optional, but many allowed); 0..1 (optional, but only one allowed)
17. Corresponding metadata element in INSPIRE/EN ISO metadata model with reference
18. An example from EnvEurope domain dataset
19. An example of XML encoding in EML
 • An example of XML encoding in INSPIRE (EN ISO)

2 Normative references

The following normative documents are indispensable for the development and application of this document:

Ecological Metadata Language (EML) Specification
3 Terms and definitions

For the purposes of this metadata specification the following definitions and terms apply.

3.1 Dataset
Collection of data. In the LTER compound the dataset is a collection of single parameters stored in a specific site. The dataset is not time dependent; each dataset can cover different time period with different frequency.

ALTERNATE DEFINITION
A dataset represents one or more data tables (text file, spreadsheet), GIS layers or database views which the metadata describes. A dataset represents the file or files that will be provided to a person requesting the data. For example, if an Excel spreadsheet is being provided, then the spreadsheet can be considered to be a dataset. If the spreadsheet has three worksheets, then it is a dataset with three data tables. If the site stores its data in a relational database, then the data to be shared would be an exported view (query). The EnvEurope/ExpeER metadata standard does not require documenting the data table. For EnvEurope, a common data model is planned. The data table of the common model can be documented once and appended by the metadata entry tool to the higher level metadata document. For legacy data, documenting at the data table level is encouraged, but not required.

3.2 EML or Ecological Metadata Language
Metadata specification development for ecology discipline and ecological dataset (Michener et al., 1997). EML is implemented as a series of XML document types that can used in a modular and extensible manner to document ecological data. Each EML module is designed to describe one logical part of the total metadata that should be included with any ecological dataset (http://knb.ecoinformatics.org).

3.3 EPSG
Numeric codes, published by the OGP Surveying and Positioning Committee and created by European Petroleum Survey Group, to identify the geodetic reference systems adopted in different national realities.

3.4 EUNIS
The European Nature Information System developed and managed by the European Topic Centre on Biological Diversity (ETC/BD in Paris) for the European Environment Agency (EEA) and the European Environmental Information Observation Network (Eionet). EUNIS data are collected and maintained by the European Topic Centre on Biological Diversity for the European Environment Agency and the European Environmental Information Observation Network to be used for environmental reporting and for assistance to the NATURA2000 process (EU Birds and Habitats Directives) and coordinated to the related EMERALD Network of the Bern Convention.

3.5 GEMET or GEneral Multilingual Environmental Thesaurus
Indexing, retrieval and control tool for the European Topic Centre on Catalogue of Data Sources (ETC/CDS) and the European Environment Agency (EEA). The basic idea for the development of GEMET was to use the best of the presently available excellent multilingual thesauri, in order to save time, energy and funds. GEMET was conceived as a “general” thesaurus, aimed to define a common general language, a core of general terminology for the environment. Specific thesauri and descriptor systems (e.g. on Nature Conservation, on Wastes, on Energy, etc.) have been excluded from the first step of development of the thesaurus and have been taken into account only for their structure and upper level terminology.
3.6 Infrastructure for spatial information (ISI) in Europe
ISI means metadata, spatial data sets and spatial data services; network services and technologies; agreements on sharing, access and use; and coordination and monitoring mechanisms, processes and procedures, established, operated or made available in accordance with the INSPIRE directive.

3.7 INSPIRE
An European Community Directive, which entered into force in May 2007. INSPIRE directive establishes an infrastructure for spatial information in Europe to support Community environmental policies, and policies or activities which may have an impact on the environment and it’s based on the infrastructures for spatial information established and operated by the 27 Member States of the European Union.

3.8 INSPIRE themes
The INSPIRE Directive addresses 34 spatial data themes needed for environmental applications. These themes are subdivided in the three annexes of the directive (see list of INSPIRE themes here http://inspire.jrc.ec.europa.eu/index.cfm/pageid/2/list7).

3.9 LTER-Europe Community
Community composed by all Long Term Ecological Research sites. It focuses on different types of ecosystems marine, lacustrine, river and terrestrial. The mission of Long Term community is: to track and understand the effects of global, regional and local changes on socio-ecological systems and their feedbacks to environment and society; to provide recommendations and support for solving current and future environmental problems (http://www.lter-europe.net/).

3.10 Metadata
Information about a dataset including, but not limited to, the people/organizations involved in creating the data and metadata, methods used, keywords, how to retrieve the data, data access and use policies, geographic, temporal, and taxonomic coverage. This information is used to discover, evaluate, and retrieve a dataset.

3.11 NaturaSDI+
An European Project with the aims at establishing a Best Practice Network dealing with a cluster of the data themes listed in the Annexes I and III of the INSPIRE Directive and focused on the nature conservation issues.

3.12 Thesaurus
List words grouped together according to similarity of meaning (synonyms). In addition to a list of semantically similar terms in one language, e.g. “arid”, “dry”, “desert”, it may contain, translations into different languages. Also a thesaurus may contain more specific ontology-based definition of the concept represented by the terms in a given thesaurus entry.

3.13 UID or Unique Identifier
Identifier which is guaranteed to be unique among all identifiers used for those objects and for a specific purpose.

3.14 URI or Uniform Resource Identifier
String of characters used to identify a name or a resource on the Internet.

3.15 URL or Uniform Resource Locator
Type of URI that specifies where a known resource is available and the mechanism for retrieving it.
3.16 Web Service
A software system designed to support interoperable machine-to-machine interaction over a network.

3.17 XML or Extensible Markup Language
Set of rules for encoding documents in machine-readable form.
4 Symbol and abbreviated terms

For the purposes of this metadata specification the abbreviations apply:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEN</td>
<td>The European Committee for Standardization</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>EN</td>
<td>European Norm</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>EML</td>
<td>Ecological Metadata Language</td>
</tr>
<tr>
<td>INSPIRE</td>
<td>Infrastructure for Spatial Information in Europe</td>
</tr>
<tr>
<td>HTML</td>
<td>Hypertext Markup Language</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>URI</td>
<td>Uniform Resource Identifier</td>
</tr>
<tr>
<td>URL</td>
<td>Uniform Resource Locator</td>
</tr>
<tr>
<td>XML</td>
<td>eXtensible Markup Language</td>
</tr>
<tr>
<td>XSD</td>
<td>XML Schema Definition</td>
</tr>
<tr>
<td>XSLT</td>
<td>Extensible Stylesheet Language Transformations</td>
</tr>
</tbody>
</table>
5 Metadata specification

The following chapter provides detail description of individual elements implemented within the EnvEurope (LTER-Europe) metadata profile for datasets description purposes. Each metadata element may have more then one sub elements described within the element definition. Examples are given for both EML and EN ISO/INSPIRE. In most cases there is a one-to-one mapping between EML and EN ISO/INSPIRE, however, this is not always the case. In order to be able to produce valid metadata for both systems, the metadata entry tool may ask for information that is needed by one system, and not by the other. For example, Metadata Date is required by INSPIRE but is not an element in EML. EML has a method for creating custom structures (<additionalMetadata>) which will be used to provide this element. In other situations, EML may require something that INSPIRE does not. For example, EML requires a field of <altitudeUnits> while INSPIRE does not. In cases like that, the metadata entry tool will ask for <altitudeUnits> even though this is not used by EN ISO/INSPIRE. In general, if INSPIRE requires an element that is not part of EML, then an <additionalMetadata> element will be created to provide that information. Conversely, if EML requires something that is not part of INSPIRE, then the tool will not make a parallel structure for it. In the case of individual parts of a concept such as geographic coverage, the two structures may not map directly. For example, INSPIRE incorporates the datum as part of any geographic reference. EML does not. No attempt would be made to create a custom geographic reference structure for EML to include datum information.

5.1 Dataset title

<table>
<thead>
<tr>
<th>Metadata element name</th>
<th>1. Dataset title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Provides a name of the dataset that is being documented as is known within the community described in detail by following elements.</td>
</tr>
<tr>
<td>Obligation/condition</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>1</td>
</tr>
<tr>
<td>INSPIRE/EN ISO element</td>
<td>1.1 Resource title/360. title</td>
</tr>
<tr>
<td>Example</td>
<td>Density and Biomass of phytoplankton in Lake Candia (1986)</td>
</tr>
<tr>
<td>Example EML XML encoding</td>
<td><title> Density and Biomass of phytoplankton in Lake Candia (1986)</title></td>
</tr>
</tbody>
</table>

5.2 Dataset identifier

<table>
<thead>
<tr>
<th>Metadata element name</th>
<th>2. Dataset identifier</th>
</tr>
</thead>
</table>
Definition | Provides unique identifier for the dataset and namespace uniquely identifying the context of the identifier code (might be a name or identifier of the person or organization responsible for the dataset). The internal identifier (code) is a combination of LTER Site Code (derived automatically from the Site name provided by the user) and free choice of alphanumeric value defined by the data owner. It's recommended to use following structure of the identifier: [Organization-ID_within_Organization]. In example: CNR_ISE-abio_chem_ao_001. Country code will be taken from the site name defined above. The final identifier will have following form LTER_EU_CountryCode_SiteNumber_Organization-ID, in example LTER_EU_IT_008-CNR_ISE-temp_candia_ao_1987.

<table>
<thead>
<tr>
<th>Obligation/condition</th>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity</td>
<td>1</td>
</tr>
</tbody>
</table>

INSPIRE/EN ISO element | 1.5. Unique resource identifier/207. code/208.1 codeSpace

Example | CNR_IREA_ISE-phyt_candia_ao_1986

Example CEN ISO/TS XML encoding | `<gmd:identifier>`
| `<gmd:RS_Identifier>`
| `<gmd:code>`
| `<gco:CharacterString CNR_IREA_ISE-phyt_candia_ao_1986>`
| </gco:CharacterString>
| </gmd:code>
| `<gmd:codeSpace>`
| `<gco:CharacterString> LTER_EU_IT_008`
| </gco:CharacterString>
| </gmd:codeSpace>
| </gmd:RS_Identifier>
| </gmd:identifier>`

5.3 Dataset creator and contact points

Metadata element name | 3. Dataset creator and contact points

Definition | Defines sub elements that provide information about the full name of the person, organization name, address and electronic mail address who created the resource or who plays a contact point role. The list of creators/contact points represents people and organizations that should be cited for the resource. At least the name and surname of the dataset creator (required by EML), the full name of the organization responsible for the data and electronic mail address must be provided. Role is always taken as a point of contact (pointOfContact – ISO model) of the dataset. For EML the `<creator>` and `<contact>` are separate elements. Both are required.
<table>
<thead>
<tr>
<th>Obligation/condition</th>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity</td>
<td>1..*</td>
</tr>
</tbody>
</table>

INSPIRE/EN ISO element

| 9. Responsible organization/29. pointOfContact |

Example

Alessandro Oggioni
CNR-IREA(Institute for Electromagnetic Sensing of the Environment)
a.oggioni@irea.cnr.it

Example EML XML encoding

```xml
<creator>  
  <individualName>  
    <givenName>Alessandro</givenName>  
    <surName>Oggioni</surName>  
  </individualName>  
  <organizationName>CNR-IREA(Institute for Electromagnetic Sensing of the Environment)</organizationName>  
  <electronicMailAddress>a.oggioni@irea.cnr.it</electronicMailAddress>  
</creator>
```

Example CEN ISO/TS XML encoding

```xml
<gmd:pointOfContact>  
  <gmd:CI_ResponsibleParty>  
    <gmd:individualName>  
      <gco:CharacterString>Alessandro Oggioni</gco:CharacterString>  
    </gmd:individualName>  
    <gmd:organisationName>  
      <gco:CharacterString>CNR-IREA(Institute for Electromagnetic Sensing of the Environment)</gco:CharacterString>  
    </gmd:organisationName>  
    <gmd:contactInfo>  
      <gmd:CI_Contact>  
        <gmd:address>  
          <gmd:CI_Address>  
            <gmd:electronicMailAddress>  
              <gco:CharacterString>irea.cnr.it</gco:CharacterString>  
            </gmd:electronicMailAddress>  
          </gmd:CI_Address>  
        </gmd:address>  
      </gmd:CI_Contact>  
    </gmd:contactInfo>  
    <gmd:role>  
    </gmd:role>  
  </gmd:CI_ResponsibleParty>  
</gmd:pointOfContact>
```

5.4 Metadata provider

| Metadata element name | 4. Metadata provider |
Definition
Provides the full name of the person, organization, or position that created documentation for the resource. At least the full name of the organization responsible for metadata and electronic mail address shall be provided.

Obligation/condition
Mandatory

Multiplicity
1..*

INSPIRE/EN ISO element
10.1 Metadata point of Contact/8. contact

Example
Tomas Kliment
CNR – ISMAR
t.kliment@ismar.cnr.it

Example EML XML encoding
```xml
<metadataProvider>
  <individualName>
    <givenName>Tomas</givenName>
    <surName>Kliment</surName>
  </individualName>
  <organizationName>CNR - ISMAR</organizationName>
  <electronicMailAddress>t.kliment@ismar.cnr.it</electronicMailAddress>
</metadataProvider>
```

Example CEN ISO/TS XML encoding
```xml
<gmd:contact>
  <gmd:CI_ResponsibleParty>
    <gmd:organisationName>
      <gco:CharacterString>CNR - ISMAR</gco:CharacterString>
    </gmd:organisationName>
    <gmd:contactInfo>
      <gmd:CI_Contact>
        <gmd:address>
          <gmd:CI_Address>
            <gmd:electronicMailAddress>
              <gco:CharacterString>t.kliment@ismar.cnr.it</gco:CharacterString>
            </gmd:electronicMailAddress>
          </gmd:CI_Address>
        </gmd:address>
      </gmd:CI_Contact>
    </gmd:contactInfo>
    <gmd:role>
      <gmd:CI_RoleCode codeListValue="pointOfContact">
        pointOfContact
      </gmd:CI_RoleCode>
    </gmd:role>
  </gmd:CI_ResponsibleParty>
</gmd:contact>
```

5.5 Metadata date

<table>
<thead>
<tr>
<th>Metadata element name</th>
<th>5. Metadata date</th>
</tr>
</thead>
</table>
Definition

Provides date of metadata creation or last update. Element is not defined as a standard one within EML schema, thus a new element metadataDate has been defined within EML element `<additionalMetadata>`.

Obligation/condition

Mandatory

Multiplicity

1

INSPIRE/EN ISO element

10.2 Metadata date/9. dateStamp

Example

2011-11-22

Example EML XML encoding

```
<additionalMetadata>
    <metadata>
        <metadataDate>2011-11-22</metadataDate>
    </metadata>
</additionalMetadata>
```

Example CEN ISO/TS XML encoding

```
<gmd:dateStamp>
    <gco:Date>2011-11-22</gco:Date>
</gmd:dateStamp>
```

5.6 Dataset publication date

<table>
<thead>
<tr>
<th>Metadata element name</th>
<th>6 Dataset publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Represents the date when the resource (the data) was first published on the EnvEurope data portal. Any other maintenance activity (update, amendment) is documented as a date of last revision. For legacy data, this represents the date when the data was published (either online or in a paper publication). If the data has not been published, then this element should not be filled in.</td>
</tr>
<tr>
<td>Obligation/condition</td>
<td>Optional</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>0.*</td>
</tr>
<tr>
<td>INSPIRE/EN ISO element</td>
<td>5.2 Date of publication/394. date</td>
</tr>
<tr>
<td>Example</td>
<td>2011-11-10</td>
</tr>
<tr>
<td>Example EML XML encoding</td>
<td><code><pubDate>2011-11-21</pubDate></code></td>
</tr>
</tbody>
</table>
| **Example CEN ISO/TS XML encoding** | `<gmd:date>
 <gmd:CI_Date>
 <gmd:date>
 <gco:Date>2011-11-10</gco:Date>
 </gmd:date>
 <gmd:dateType>
 <gmd:CI_DateTypeCode
codeList="http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/Codelist/ML_gmxCodeLists.xml#CI_DateTypeCode"
codeListValue="publication">publication</gmd:CI_DateTypeCode>
 </gmd:dateType>
 </gmd:CI_Date>
 </gmd:date>
</gmd:date>` |
5.7 Dataset language

<table>
<thead>
<tr>
<th>Metadata element name</th>
<th>Definition</th>
<th>Obligation/condition</th>
<th>Multiplicity</th>
<th>INSPIRE/EN ISO element</th>
<th>Example</th>
<th>Example EML XML encoding</th>
<th>Example CEN ISO/TS XML encoding</th>
</tr>
</thead>
</table>
| Dataset language | The language in which the textual parts of dataset are written. For instance the names of features and their attributes collected within the dataset or the data itself. Any other language used in textual information shall be referenced here as well. | Mandatory | 1.* | 1.7 Resource language/39. language | Eng | `<language>eng</language>` | `<gmd:language>
 <gmd:LanguageCode
codeList="http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139
_Schemas/resources/Codelist/ML_gmxCodelists.xml#LanguageCode"
codeListValue="eng">eng</gmd:LanguageCode>
</gmd:language>` |

5.8 Dataset abstract

<table>
<thead>
<tr>
<th>Metadata element name</th>
<th>Definition</th>
<th>Obligation/condition</th>
<th>Multiplicity</th>
<th>INSPIRE/EN ISO element</th>
<th>Example</th>
<th>Example EML XML encoding</th>
<th>Example CEN ISO/TS XML encoding</th>
</tr>
</thead>
</table>
| Dataset abstract | A brief overview of the resource that is being documented. The abstract should include basic information that summarizes the resource. | Mandatory | 1 | 1.2 Resource abstract/25. abstract | Dataset provides information about water temperature collected in Lake Candia during the year 1987. The temperature within this dataset concerns the surface water and an average, of water temperature, within the depth scales from 0 to 6 m. | `<abstract>
 <section>
 <para> The dataset covers the evolution of biomass and density of phytoplankton in Lake Candia for the year 1986. The sampling was carried out according to sampling classic centre of the lake, the point of maximum depth, using the tear-off bottle. Samples were collected every meter of depth and then integrated into a single rate of water, in order to obtain a sample between 0 and 6 m deep.
 </para>
 </section>
</abstract>` | `<gmd:abstract>
 <gco:CharacterString>Dataset provides information about water temperature collected in Lake Candia during the year 1987. The temperature within this dataset concerns the surface water and an average, of water temperature, within the depth scales from 0 to 6 m.
 </gco:CharacterString>
</gmd:abstract>` |
9. Dataset keyword set

<table>
<thead>
<tr>
<th>Metadata element name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Provides a set of related keywords describing the content of the dataset coming from EnvThes vocabulary. Following information are recommended to be used in order to describe each dataset:</td>
</tr>
<tr>
<td></td>
<td>1. Ecosystem structure part – defines the part of the ecosystem structure in perspective with the content of the dataset. List is provided with three values – biotic, abiotic and socio-economic</td>
</tr>
<tr>
<td></td>
<td>2. Ecosystem type – defines ecosystem types in EnvEurope project – provides a list with these values – terrestrial, rivers, lakes, marine</td>
</tr>
<tr>
<td></td>
<td>3. Observed parameter - value of the parameter within the dataset from EnvEurope list of parameters</td>
</tr>
<tr>
<td></td>
<td>4. EUNIS habitat type – provides habitat types tree according to EUNIS habitat type hierarchical view.</td>
</tr>
<tr>
<td></td>
<td>5. GEMET and other related repositories – provides keywords describing the content of dataset derived from online repository of European Environmental thesaurus GEMET (http://www.eionet.europa.eu/gemet). Use this thesaurus (theme: biology) for keywords to provide information about the type of ecosystem, for example, terrestrial ecosystem, marine ecosystem, freshwater system.</td>
</tr>
<tr>
<td></td>
<td>6. Related INSPIRE theme (Environmental monitoring facilities, Habitats and Biotopes, Species distribution and others).</td>
</tr>
<tr>
<td></td>
<td>7. Other keyword controlled vocabulary types: for example, Getty Thesaurus of Geographic Names, UL-LTER keyword list</td>
</tr>
<tr>
<td></td>
<td>8. Free keyword – use this only if there is a concept needed that is not found in one of the previous systems.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obligation/condition</th>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity</td>
<td>1..*</td>
</tr>
</tbody>
</table>

Example

1. Ecosystem structure part: biotic
2. Ecosystem type: lakes
3. Observed parameter: biomass, bulk density
4. EUNIS habitat type: C: Inland surface waters, C1.3 : Permanent eutrophic lakes, ponds and pools
5. GEMET and other vocabularies: ecosystem ecology, phytoplankton.
6. INSPIRE theme: Species distribution, Environmental Monitoring Facilities
7. Any other free keywords: use this only if there is a concept needed that is not found in one of the previous - Lake Candia
Example CEN ISO/TS XML encoding

<keywordSet>
 <keyword>Biotic parameters</keyword>
 <keyword>Biomass</keyword>
 <keyword>Density</keyword>
 <keywordThesaurus>EnvEurope Thesaurus ;2012-02-01</keywordThesaurus>
</keywordSet>

<keywordSet>
 <keyword>ecology</keyword>
 <keyword>phytoplankton</keyword>
 <keyword>lake</keyword>
 <keyword>eutrophication</keyword>
 <keyword>freshwater ecosystem</keyword>
 <keywordThesaurus>GEMET - Concepts version 2.4;2010-01-13</keywordThesaurus>
</keywordSet>

<keywordSet>
 <keyword>C : Inland surface waters</keyword>
 <keyword>C1.3 : Permanent eutrophic lakes, ponds and pools</keyword>
 <keywordThesaurus>EUNIS biodiversity database - Habitat types;2009-02-01</keywordThesaurus>
</keywordSet>

<keywordSet>
 <keyword>Habitats and Biotopes</keyword>
 <keyword>Species distribution</keyword>
 <keyword>Environmental Monitoring Facilities</keyword>
 <keywordThesaurus>INSPIRE Feature Concept Dictionary;2008-12-05</keywordThesaurus>
</keywordSet>

<keywordSet>
 <keyword>Lago di Candia</keyword>
 <keywordThesaurus>Getty Thesaurus of Geographic Names;2010-01-13</keywordThesaurus>
</keywordSet>
5.10 Dataset access and use constraints

<table>
<thead>
<tr>
<th>Metadata element name</th>
<th>10. Dataset access and use constraints</th>
</tr>
</thead>
</table>

Example CEN ISO/TS XML encoding

```xml
<gmd:descriptiveKeywords>
  <gmd:keyword>
    <gco:CharacterString>Biotic parameters</gco:CharacterString>
  </gmd:keyword>
  <gmd:keyword>
    <gco:CharacterString>Biomass</gco:CharacterString>
  </gmd:keyword>
  <gmd:keyword>
    <gco:CharacterString>Density</gco:CharacterString>
  </gmd:keyword>
  <gmd:thesaurusName>
    <gmd:CI_Citation>
      <gmd:title>
        <gco:CharacterString>EnvEurope Thesaurus</gco:CharacterString>
      </gmd:title>
      <gmd:date>
        <gco:Date>2012-02-01</gco:Date>
      </gmd:date>
      <gmd:dateType>
        <gmd:CI_DateTypeCode codeList="publication">publication</gmd:CI_DateTypeCode>
      </gmd:dateType>
    </gmd:CI_Citation>
  </gmd:thesaurusName>
</gmd:descriptiveKeywords>
```
Definition

Provides a list of rules defining permissions for this dataset. The INSPIRE directive states that metadata will be publicly available. As a result, the standard permissions for metadata will be—public: read; data owner: all. This will allow the metadata entry tool to generate EML documents that are valid for a Metacat server (more about in introduction above). A second use of this element is used to describe the permissions for the data. In this context, metadata will not be provided in EML format, but will allow the metadata provider to specify permissions that will be used by the EnveEurope data management system. In general, the LTER-Europe data policy requires that most data be made freely available after a reasonable period (three years from date of collection is the norm). As a result, new data may be available to EnveEurope members, but not to others. It is important for the system to be able to recognize when the data is to be made available. It is recommended that the 3-year rule be implemented and that the data owner must take specific actions to change this.

Obligation/condition

Mandatory

Multiplicity

1..*

INSPIRE/EN ISO element

8.1. Conditions applying to access and use/68. useLimitation

Example

Principal: EnveEurope (LTER-Europe) with permission type: Free
Principal: Public with permission type: Restricted

Example EML XML encoding

```xml
<access authSystem="http://enveurope.geocatalogue.isecn.it/europe">
<allow>
    <principal>EnvEurope (LTER-Europe)</principal>
    <permission>Free</permission>
</allow>
<allow>
    <principal>Public</principal>
    <permission>Free upon request</permission>
</allow>
</access>
```

Example CEN ISO/TS XML encoding

```xml
<gmd:useLimitation>
    <gco:CharacterString>Allowed for EnveEurope (LTER-Europe) group with permission type Free.</gco:CharacterString>
</gmd:useLimitation>
<gmd:useLimitation>
    <gco:CharacterString>Allowed for Public group with permission type Free upon request</gco:CharacterString>
</gmd:useLimitation>
```

5.11 Dataset intellectual rights

<table>
<thead>
<tr>
<th>Metadata element name</th>
<th>11. Dataset intellectual rights</th>
</tr>
</thead>
</table>

22
Expeer-MD_Specification-Rev.2.doc
appendix 2
Typically, an Intellectual Rights element will contain a rights management statement for the resource, or reference a URL (web address) that provides such licensing information. Rights information encompasses Intellectual Property Rights (IPR), copyright, and various property rights. Moreover, these rights might include requirements for use, requirements for attribution, or other requirements the owner would like to impose. A select list has been proposed to be used and contains following options:

- Co-authorship on publications resulting from use of the dataset
- The data provider must be offered co-authorship for publications using this dataset at least within the metadata description
- Formal acknowledgement of the dataset providers
- The opportunity to collaborate on the project using the dataset
- At least part of the costs of dataset acquisition, retrieval or provision must be recovered.
- The opportunity to review the results based on the dataset
- Reprints of articles using the dataset must be provided to the data provider
- The dataset provider is given a complete list of all products that make use of the dataset
- Legal permission for dataset use is obtained
- Mutual agreement on reciprocal sharing of data
- The data provider is given and agrees to a statement of uses to which the dataset will be put
- Any others

<table>
<thead>
<tr>
<th>Obligation/condition</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity</td>
<td>0..*</td>
</tr>
<tr>
<td>INSPIRE/EN ISO element</td>
<td>8.2. Limitations on public access/72. otherConstraints</td>
</tr>
<tr>
<td>Example</td>
<td>Co-authorship on publications resulting from use of the dataset</td>
</tr>
</tbody>
</table>
| Example EML XML encoding | <intellectualRights>
 |
 | <section>
 | <para> Co-authorship on publications resulting from use of the dataset
 | </para>
 | </section>
 | </intellectualRights> |
| Example CEN ISO/TS XML encoding | <gmd:useConstraints>
 | <gmd:MD_RestrictionCode
 | codeList="http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/Codelist/gmxCodelists.xml#MD_RestrictionCode"
 | codeListValue="intellectualPropertyRights"/>
 | </gmd:useConstraints>
 | <gmd:otherConstraints>
 | <gco:CharacterString> Co-authorship on publications resulting from use of the dataset.
 | </gco:CharacterString>
 | </gmd:otherConstraints> |
5.12 Dataset online distribution

<table>
<thead>
<tr>
<th>Metadata element name</th>
<th>12. Dataset online distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>A Uniform Resource Locator (URL) may retrieve the data directly (EML function: download), or provide information about how to acquire the data (EML function: information). Within EnvEurope some data will be available centrally while most data will be retained by the data owner. How data is distributed is determined by the data owner. A function: download URL might be to either a file or a service.</td>
</tr>
<tr>
<td>Obligation/condition</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>1..*</td>
</tr>
<tr>
<td>INSPIRE/EN ISO element</td>
<td>1.4 Resource locator/277. onLine</td>
</tr>
<tr>
<td>Example</td>
<td>Sensor Observation Service Get Capabilities request http://sos.ise.cnr.it/sos?service=SOS&amp;request=GetCapabilities</td>
</tr>
<tr>
<td>Example EML XML encoding</td>
<td><code><distribution></code>
<code><online></code>
<code><onlineDescription>Sensor Observation Service Get Capabilities request</onlineDescription></code>
<code><url>http://sos.ise.cnr.it/sos?service=SOS&amp;request=GetCapabilities</url></code>
<code></online></code></td>
</tr>
</tbody>
</table>

5.13 Dataset geographic bounding coordinates

<table>
<thead>
<tr>
<th>Metadata element name</th>
<th>13. Dataset geographic bounding coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Provides four bounding coordinates defining bounding box of the dataset spatial extent. The bounding box is an INSPIRE requirement. It must be understood that this can give an exaggerated picture of the geographic extent, if, for example, the sampling area is a diagonal transect or river section. The bounding box shall be expressed with westbound and eastbound longitudes, and southbound and northbound latitudes in decimal degrees, with a precision of at least two decimals. As a default coordinate reference system of bounding box shall be used ETRS89 (EPSG: 4258).</td>
</tr>
<tr>
<td>Obligation/condition</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>1..*</td>
</tr>
</tbody>
</table>
5.14 Dataset geographic bounding altitudes

<table>
<thead>
<tr>
<th>Metadata element name</th>
<th>14. Dataset geographic bounding altitudes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>This optional element provides bounding altitudes for defined bounding box. This element is defined by two numbers (minimum and maximum altitudes) defining height above or below sea level, and the unit of measure. As a default vertical coordinate reference system of bounding altitudes shall be used Mean sea level height (EPSG: 5714). <code><altitudeUnits></code> is required by EML but not by INSPIRE. This is not to be confused with sampling depth for lake, river or marine systems. For example, the Dead Sea would have altitude of -500 meters, Lake Titicaca would have an altitude of +3,800 meters. Most marine systems would have altitudes of zero meters even if the sampling were done at -4,000 meters.</td>
</tr>
<tr>
<td>Obligation/condition</td>
<td>Optional</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>0..*</td>
</tr>
<tr>
<td>INSPIRE/EN ISO element</td>
<td>/354. EX_VerticalExtent</td>
</tr>
<tr>
<td>Example</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>226</td>
</tr>
</tbody>
</table>
5.15 Dataset temporal extent

<table>
<thead>
<tr>
<th>Metadata element name</th>
<th>15. Dataset temporal extent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Provides information about the time or date ranges – time period covered by the content of the dataset defined by begin and end dates. If there is only single date to be provided, the begin and end dates are the same.</td>
</tr>
<tr>
<td>Obligation/condition</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>1..*</td>
</tr>
<tr>
<td>INSPIRE/EN ISO element</td>
<td>5.1 Temporal extent/350. EX_TemporalExtent</td>
</tr>
</tbody>
</table>

Example

- 1986-03-06
- 1986-12-17

Example EML XML encoding

```xml
<temporalCoverage>
  <rangeOfDates>
    <beginDate>
      <calendarDate>1986-03-06</calendarDate>
    </beginDate>
    <endDate>
      <calendarDate>1986-12-17</calendarDate>
    </endDate>
  </rangeOfDates>
</temporalCoverage>
```
5.16 Dataset taxonomic coverage

<table>
<thead>
<tr>
<th>Metadata element name</th>
<th>16. Dataset taxonomic coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Provides information about the taxonomic classification of the organisms represented in the dataset. This element has two components: <code><taxonRankName></code> (class, family, order, etc.) and <code><taxonRankValue></code> (mammalia, carnivora, Felidae). This field is applicable only for biotic data. Depending on the content of the dataset, provide information about the most common level of taxonomy aggregation (plants: family, marine invertebrates: phylum or class, etc.) Recommendation is to use common catalogue of species, for example, Catalogue of Life http://www.catalogueoflife.org/browse/classification, GBIF [http://www.gbif.org], EUNIS [http://eunis.eea.europa.eu/species-names.jsp].</td>
</tr>
<tr>
<td>Obligation/condition</td>
<td>Conditional – mandatory only for biotic data</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>0..*</td>
</tr>
<tr>
<td>INSPIRE/EN ISO element</td>
<td>3.1 Keyword value /53. Keyword /54.Type</td>
</tr>
<tr>
<td>Example</td>
<td>Class - Chrysophyceae</td>
</tr>
<tr>
<td></td>
<td>Species - Mallomonas akrokomos</td>
</tr>
</tbody>
</table>
| Example EML XML encoding | `<taxonomicClassification>`<taxonRankName>Class</taxonRankName><taxonRankValue>Chrysophyceae</taxonRankValue></taxonomicClassification>`<taxonomicClassification>`<taxonRankName>Species</taxonRankName><taxonRankValue>Mallomonas akrokomos</taxonRankValue>`<taxonomicClassification>`

Example CEN ISO/TS XML encoding

```xml
<gmd:EX_TemporalExtent>
  <gmd:extent>
    <gml:TimePeriod gml:id="gml">
      <gml:beginPosition>1986-03-06</gml:beginPosition>
      <gml:endPosition>1986-12-17</gml:endPosition>
    </gml:TimePeriod>
  </gmd:extent>
</gmd:EX_TemporalExtent>
```
5.17 Dataset methods description

<table>
<thead>
<tr>
<th>Metadata element name</th>
<th>17. Dataset methods description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Provides repeated sets of elements that document a series of procedures followed to produce any dataset object. These shall include information about procedure steps, software used within individual steps, source data and any quality measures taken. It may provide a general description of the method steps defined by previous research or documented in methodologies, guidelines, specifications, and standards in the <title>. The element shall provide a general explanation of the data producer’s knowledge about the lineage of a dataset. All information included here should help a future data user to understand more about the data content. The methods section is important to allow the user to determine whether the user would be able to combine this data with his own, etc. It’s recommended to provide a method title from the list established within EnvEurope project and link to its further description in EnvEurope thesaurus. If the method is not included in the list description and some reference are important to be written. Datasets produced prior to EnvEurope may need methodologies not in the list of EnvEurope methods.</td>
</tr>
</tbody>
</table>

| Obligation/condition | Mandatory |
| Multiplicity | 1..* |
5.18 Dataset instrumentation description

<table>
<thead>
<tr>
<th>Metadata element name</th>
<th>18. Dataset instrumentation description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Provides information about any instruments used in the data collection or quality control and quality assurance. The description should include vendor, model number, optional equipment, etc.</td>
</tr>
<tr>
<td>Obligation/condition</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>1..*</td>
</tr>
<tr>
<td>INSPIRE/EN ISO element</td>
<td>/88. rationale</td>
</tr>
<tr>
<td>Example</td>
<td>Tear Bottle, year of production 1999, Model number: SJ900AXCD</td>
</tr>
<tr>
<td>Example EML XML encoding</td>
<td><instrumentation>Tear Bottle, year of production 1999, Model number: SJ900AXCD</instrumentation></td>
</tr>
</tbody>
</table>

5.19 Dataset sampling description

| Metadata element name | 19. Dataset sampling description |
Definition

Allows for a text-based/human readable description of the actual sampling procedures used within the dataset collection. This element shall include information about dataset lineage - general explanation of the data producer’s knowledge about the lineage of a dataset. This element shall also provide a description or geographical definition of the representative area of sampling.

<table>
<thead>
<tr>
<th>Obligation/condition</th>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity</td>
<td>1..*</td>
</tr>
<tr>
<td>INSPIRE/EN ISO element</td>
<td>6.1 Lineage /83. statement</td>
</tr>
</tbody>
</table>

Example

Each sample was collected at the point of maximum depth of the lake, incorporating identical aliquot of water taken between 0-2 m, 3 m, 4 m and between 5-6 m deep. The sampling frequency was every month.

Example EML XML encoding

```xml
<samplingDescription>
  <para>Each sample was collected at the point of maximum depth of the lake, incorporating identical aliquot of water taken between 0-2 m, 3 m, 4 m and between 5-6 m deep. The sampling frequency was every month. Further data acquiring process description</para>
</samplingDescription>
```

Example CEN ISO/TS XML encoding

```xml
<gmd:statement>
  <gco:CharacterString>Each sample was collected at the point of maximum depth of the lake, incorporating identical aliquot of water taken between 0-2 m, 3 m, 4 m and between 5-6 m deep.</gco:CharacterString>
</gmd:statement>
```

5.20 Dataset legal obligation reporting

<table>
<thead>
<tr>
<th>Metadata element name</th>
<th>20. Dataset legal obligation reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Provides information whether a dataset has been reported to the local, or regional or national bodies to fulfil the obligations from particular legal regulations.</td>
</tr>
<tr>
<td>Obligation/condition</td>
<td>Optional</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>0..*</td>
</tr>
</tbody>
</table>
| INSPIRE/EN ISO element | 7.1 Specification/130. specification; 131. explanation
| | 7.2 Degree/ 132. pass |
| Example | Water Framework Directive (00/60/EEC) |
| Example EML XML encoding | Not included in EML XML |
Example CEN ISO/TS XML encoding

```xml
<gmd:report>
  <gmd:DQ_DomainConsistency>
    <gmd:measureIdentification>
      <gmd:RS_Identifier>
        <gmd:code>
          <gco:CharacterString>Legal obligation conformity</gco:CharacterString>
        </gmd:code>
      </gmd:RS_Identifier>
      <gmd:codeSpace>
        <gco:CharacterString>EU Nature Legislation</gco:CharacterString>
      </gmd:codeSpace>
    </gmd:measureIdentification>
    <gmd:result>
      <gmd:DQ_ConformanceResult>
        <gmd:specification>
          <gmd:CI_Citation>
            <gmd:title>
            </gmd:title>
            <gmd:date>
              <gmd:CI_Date>
                <gmd:date>2000-10-23</gmd:date>
                <gmd:dateType>
                  <gmd:CI_DateTypeCode codeListValue="creation" codeList="http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/Codelist/ML_gmxCodelists.xml#CI_DateTypeCode">creation</gmd:CI_DateTypeCode>
                </gmd:dateType>
              </gmd:CI_Date>
            </gmd:date>
          </gmd:CI_Citation>
          <gmd:explanation>
            <gco:CharacterString>see the referenced specification</gco:CharacterString>
          </gmd:explanation>
        </gmd:specification>
        <gmd:pass>
          <gco:Boolean>false</gco:Boolean>
        </gmd:pass>
      </gmd:DQ_ConformanceResult>
    </gmd:result>
  </gmd:DQ_DomainConsistency>
</gmd:report>
```
6 EnvEurope (EML) metadata crosswalk to the INSPIRE (EN ISO) metadata profile

Metadata crosswalk (transformation) has been developed in accordance with methodology described in detail within the book Geographic information metadata for spatial data infrastructures (Nogueras-Iso, J. et al., 2005) and shown in figure 1.

![Metadata crosswalk methodology schemata](image)

Fig. 1 Metadata crosswalk methodology schemata (based on Nogueras-Iso, J. et al., 2005)

First part of this chapter provides an overview of standards and specifications to be crosswalked. The second part describes in detail each steps made within the metadata crosswalk realization. Moreover an example of EML metadata record and its EN ISO/INSPIRE compliant form is given in annexes together with EN ISO and INSPIRE validation report.

6.1 Ecological Metadata Language (EML) Specification overview

Ecological Metadata Language (EML) is a metadata specification developed by the ecology discipline and for the ecology discipline. It is based on prior work done by the Ecological Society of America and associated efforts (Michener et al., 1997, Ecological Applications). EML is implemented as a series of XML schemas that can be used in a modular and extensible manner to document ecological data. Each EML module is designed to describe one logical part of the total metadata that should be included with any ecological dataset.

The EML standard is made up of 23 modules (EML). The modules are grouped into the following groups:

- Root-level structure: **eml** module (metadata container) and **eml-resource** module (provides base information for all resources)
- Top-level resource: **eml-dataset** (data sets description), **eml-literature** (citation specific information), **eml-software** (software specific information) and **eml-protocol** module (research protocol specific information)
- Supporting modules: **eml-access** (access control rules for resources), **eml-physical** (physical file format information), **eml-party** (people and organization information), **eml-coverage** (information about geographic, temporal and taxonomic extents), **eml-project** (research projects information) and **eml-methods** (methodological information for the resource)
- Data organization: **eml-entity** (entity level information within dataset), **eml-attribute** (attribute level information) and **eml-constraint** (information about relation ships among and within individual dataset)
- Entity types: **eml-dataTable** (information about data table entities), **eml-spatialRaster** (information about regularly gridded geospatial image data), **eml-spatialVector** (information about non-gridded geospatial image data), **eml-storedProcedure**
(information about data tables resulting from procedures stored in a database) and **eml-view** (information about data tables resulting from a database query)

- Utility modules: **eml-text** (text field formatting) **eml-unitTypeDefinitions** (unit definition)

The EML modules used can vary depending on the intended use as described in table below. Each level includes the modules described in lower levels.

adapted from: http://im.lternet.edu/im_practices/metadata/guides/EML_levels

<table>
<thead>
<tr>
<th>Level</th>
<th>Usage</th>
<th>Modules (elements) Involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Identification</td>
<td>title, creator, contact, abstract, keywords, publisher, publication date</td>
</tr>
<tr>
<td>L2</td>
<td>Discovery</td>
<td>eml-coverage (geographic, temporal, taxonomic)</td>
</tr>
<tr>
<td>L3</td>
<td>Evaluation</td>
<td>Intellectual Rights, project, methods, dataTable/entityGroup, dataTable/attributes</td>
</tr>
<tr>
<td>L4</td>
<td>Access</td>
<td>eml-access, eml-physical</td>
</tr>
<tr>
<td>L5</td>
<td>Integration</td>
<td>attributeList (full descriptions), contraint, quality control</td>
</tr>
</tbody>
</table>

Identification level usage of EML provides the minimum level to identify the dataset: Minimum content for adequate dataset discovery in a general cataloging system or repository.

Discovery level usage includes Level 1 content plus coverage information to support targeted searches

Evaluation includes Level 2 content plus dataset details to enable end-user evaluation of the methodology and data entities

Access level includes Level 3 content plus data access details to support automated data retrieval

Integration level includes Level 4 content plus complete attribute and quality control details to support computer-assisted data integration and re-sampling.

ISO 19115:2003 defines the schema required for describing geographic information and services. It provides information about the identification, the extent, the quality, the spatial and temporal schema, spatial reference, and distribution of digital geographic data.

ISO 19115:2003 is applicable to the cataloguing of datasets, clearinghouse activities, and the full description of datasets; geographic datasets, dataset series, and individual geographic features and feature properties.

ISO 19115:2003 defines: mandatory and conditional metadata sections, metadata entities, and metadata elements; the minimum set of metadata required to serve the full range of metadata applications (data discovery, determining data fitness for use, data access, data transfer, and use of digital data); optional metadata elements - to allow for a more extensive standard description of geographic data, if required; a method for extending metadata to fit specialized needs.

Though ISO 19115:2003 is applicable to digital data, its principles can be extended to many other forms of geographic data such as maps, charts, and textual documents as well as non-geographic data.

Metadata for geographic data is presented in UML Packages. Each package contains one or more entities (UML Classes), which can be specified (sub classed) or generalized (super classed). Entities contain elements (UML class attributes) which identify the discrete units of metadata. Entities may be related to one or more other entities. Entities can be aggregated and repeated as necessary to meet the mandatory requirements stated in this International Standard as well as additional user requirements.

ISO 19115 metadata standard is made up of 14 top-level packages (ISO, 2003):

- **Metadata entity set information**: metadata container and contains metadata about metadata (metadata responsible party, creation date, language, identification and others)
• Identification information: basic information required to uniquely identify a resource
• Constraint information: restrictions on the access and use of a resource or metadata
• Data quality information: package contains a general assessment of the quality of the dataset
• Maintenance information: information about the scope and frequency of updating
• Spatial representation information (includes grid and vector representation): contains information concerning the mechanisms used to represent spatial information in a dataset
• Reference system information: contains the description of the spatial and temporal reference system(s) used in a dataset
• Content information: information identifying the feature catalogue used and/or information describing the content of a coverage dataset
• Portrayal catalogue information: contains information identifying the portrayal catalogue used
• Distribution information: contains information about the distributor of, and options for obtaining, a resource
• Metadata extension information: contains information about user specified metadata extensions
• Application schema information: contains information about the application schema used to build a dataset
• Extent information: contains information about the geographic, temporal and the vertical extent of the dataset
• Citation and responsible party information: contains information about the party responsible for dataset

ISO19115 is a complex model that provides more than 300 metadata elements (86 classes, 282 attributes, 56 relations) to describe spatial but also non-spatial datasets. Most of them can be applied optionally. However, the standard defines only a conceptual schema based on UML models and related data dictionaries. Therefore, technical specification CEN ISO/TS 19139:2009 Geographic information - Metadata - XML scheme implementation (ISO/TS 19139:2007) defines Geographic MetaData XML (gmd) encoding, an XML Schema implementation derived from ISO 19115.

6.3 INSPIRE metadata regulation overview

INSPIRE directive has entered into force in year 2007 and had to be transposed into EU member states legislation within 2 years. INSPIRE defines an infrastructure for spatial information in Europe, which consists of 5 components: spatial data, metadata, network services, data sharing and monitoring and reporting. For each abovementioned component EC approves commission regulations. Among others, metadata regulation has been approved in year 2008 and defines metadata elements to be included within the datasets and service description in order to be compliant with INSPIRE legal requirements. This regulation provides within its annex metadata implementing rules where each required metadata element is defined via its identification, name, description and obligation with multiplicity and condition.

INSPIRE metadata regulation is made up of 10 groups containing following elements:

• Identification - provides general identification information distributed via these metadata elements: Resource title, Resource type, Resource locator, Unique resource identifier, Coupled resource and Resource language
• Classification of spatial data and services – provides categorization of the resources via elements Topic category and Spatial data service type
• Keyword – provides further description by keywords with elements Keyword value and Originating controlled vocabulary
• Geographic location – provides spatial extent definition via element Geographic bounding box
• Temporal extent – provides temporal aspect definition either for temporal range via Temporal extent element or just a single date of an event within resource lifecycle via Date of publication, Date of last revision and Date of creation
• Quality and validity – provides summary information about resource quality via elements Lineage and Spatial resolution
• Conformity – provides information about conformity to particular implementing rules as well as the its degree via Specification and Degree elements
• Constraints related to access and use – provides a set of conditions applying to access and use and limitations on public access via Conditions applying to access and use and Limitations on public access elements
• Organisations responsible for the establishment, management, maintenance and distribution of spatial data sets and services – provides information about responsible parties via Responsible party (name, organisation and e-mail address) and Responsible party role elements
• Metadata on metadata – provides information describing metadata itself via Metadata point of contact (name, organisation and e-mail address), Metadata date and Metadata language elements.

It is important to mention that this metadata description is planned to provide information mainly for spatial data sets and services discovery and partially for evaluation, access and use purposes. Further metadata elements mainly devoted to resource evaluation is then defined within implementing rules for spatial data sets according to particular INSPIRE spatial data themes (defined 34 spatial data themes within INSPIRE framework).

INSPIRE metadata regulation implementation is based on application schema defined by ISO/TS 19139. Therefore the same rules for data types definition, multiplicity and obligatory shall be valid. However it is important to mention here that positive validation message against ISO does not mean that this applies also for INSPIRE validation. For example an instance of Lineage class is within ISO Core profile optional and within the INSPIRE metadata regulation mandatory.

6.4 Metadata crosswalk step 1 - harmonization

This is an initial and very important step of metadata transformation, which aims to examine both standards in order to understand the definition of individual elements before the semantic mapping. In particular element identification, names, semantic definition, obligation, multiplicity, hierarchical organization, constraints and data types have to be known.

Therefore to understand each metadata element properly we had studied in detail EML specification, ISO19115 standard an INSPIRE Metadata regulation briefly introduced in the previous sub-chapters.

EML provides a conceptual framework via online specification in HTML format. For each metadata element is provided following descriptive information (element description component + example):

• Name: title
• Type: NonEmptyStringType
• Description of this field: The 'title' field provides a description of the resource that is being documented that is long enough to differentiate it from other similar resources. Multiple titles may be provided, particularly when trying to express the title in more than one language (use the "xml:lang" attribute to indicate the language if not English/en)
• Example: Vernal pool amphibian density data, Isla Vista, 1990-1996
• Use: required
• How many: unbounded

ISO provides different approach of a conceptual definition, each metadata elements as a discrete unite is defined as an attribute of UML classes (metadata entities) grouped into metadata packages. The second part is data dictionary where following details of each element have taken their place:

• Identifier: 360.
• Name/Role name: title
• Short Name: resTitle
• Definition: name by which the cited resource is known
• Obligation/Condition: M
• **Maximum occurrence:** 1
• **Data type:** CharacterString
• **Domain:** Free text

INSPIRE metadata regulation provides similar approach as EML (without UML model), since it is based on ISO model. However it has defined some changes relative to ISO definitions, especially in elements naming and their obligation/condition and at same cases also definition (Metadata date). Metadata element details are given as follows:

- **Reference:** 1.1
- **Metadata element:** Resource title
- **Definition:** This a characteristic, and often unique, name by which the resource is known
- **Value domain:** free text
- **Multiplicity:** 1
- **Condition:** textual description of a condition when optional element (element with multiplicity value 0 or 0..* shall appear as mandatory

In order to get ready for the second step each metadata element intended to be mapped and described as can be seen above was studied. Only high level knowledge and semantic understanding of each metadata element might initiate semantic mapping described in the next sub-chapter.

6.5 Metadata crosswalk step 2 - semantic mapping

The second step is aimed at determine the semantic correspondence between the standards to be mapped. This step implies matching between each source and semantically equivalent target element. Therefore a clear and precise definition of each element made in previous harmonization step is very important.

The result of this step might be a matching table where on the left part is listed all metadata elements from source specification to be mapped and on the right part semantic equivalents defined at the target metadata specification. An example of such a matching table is shown in figure 2 below (first section represents the EML elements; second sections shows the ISO19139 elements; the third section shows the corresponding INSPIRE elements).

<table>
<thead>
<tr>
<th>EML - Ecological metadata language</th>
<th>Metadata crosswalk - EML2ISO (INSPIRE MD IR) - matching table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element name</td>
<td>Obligation</td>
</tr>
<tr>
<td>title</td>
<td>M</td>
</tr>
<tr>
<td>abstract</td>
<td>O</td>
</tr>
<tr>
<td>url</td>
<td>M</td>
</tr>
<tr>
<td>packageID</td>
<td>M</td>
</tr>
<tr>
<td>system</td>
<td>M</td>
</tr>
<tr>
<td>language</td>
<td>O</td>
</tr>
</tbody>
</table>

36 appendix 2
Expeer-MD_Specification-Rev.2.doc
This matching table is then used within the last fourth step a crosswalk implementation. It is often necessary to define additional rules in order to get metadata from the particular source position to the related target position within nested XML structure. Moreover many more transformation functions may appear. The next section explains the additional transformation rules.

6.6 Metadata crosswalk step 3 - additional rules

This step describes the additional transformation functions that may be required to convert source to target metadata. This implies content conversion rules (simple types, code-lists, complex types), element to element mapping considering obligation (something optional in one system may be required in another), multiplicity (how many times an element may occur) and element occurrence and hierarchical and structural organization (EML and ISO/INSPIRE may differ in the order and element nesting).

In order to develop a crosswalk which provides ISO equivalent metadata transformed from EML the following transformation functions (available in Altova MapForce software) have been applied:

- **concat**: concatenates (appends) two or more values into a single result string. All input values are automatically converted to type string
- **group-by**: groups the input sequence by distinct keys and outputs the series of groups along with their keys
- **string-join**: concatenates all the values of the input sequence into one string delimited by whatever character you choose to use as the delimiter character
- **substring-before**: this function returns that part of incoming string that occurs before the predefined test string within it
- **substring-after**: similar as previous one just returns the string occurring after the test string
- **exists**: function which returns true if the node exists, else returns false
- **if-else**: condition function
- **substitute-missing**: function is used to map the current field content if the node exists in the source file, otherwise use the item defined as "replace-with" parameter within function.
- **constants**: function that supplies fixed data to output fields

6.7 Metadata crosswalk step 4 - implementation

The last step implements all the rules defined within the previous steps within the most appropriate technical solution based on metadata application schema transformation.

In our case this task was slightly simplified due to existing application schemas for both metadata EML and ISO based on XML technology as XSD schemas. Altova MapForce is being used to define the transformation rules. This tool provides an easy to use drag and drop data mapping, conversion and integration environment. XML files, databases, flat files, Excel files and Web services can be used as data to be mapped among each other. Mapforce also has code generation (XSLT 1.0/2.0, XQuery, Java, C# and C++) component that allows the transformation to be performed on systems that do not have MapForce installed. MapForce also has a report generator (HTML, RTF or DOC formats) to create more understandable versions of mapping rules within the project. Such a report has been generated from our mapping and is attached to this document as annex V.
We have created a project using Altova MapForce environment called EML2ISO and applied all
required steps defined previously (semantic mapping and additional rules). Working environment is
shown in figure 3 below.

![Fig. 3 EML2ISO metadata crosswalk in MapForce mapping environment](image)

MapForce’s environment provides a view of XSLT code as well as view of result XML file
generated after transformation of input file. The final product of our work is XSLT file eml2iso.xslt,
which might be used to transform EML XML metadata record to ISO and INSPIRE compliant
metadata record. Obviously an XSLT engine must be used in order to perform such a transformation.
Most XML software has XSLT processor embedded as for instance XML Spy or oXygen. We have
used both applications to transform EML metadata example into ISO form successfully. The resulting
XML files need some editing because there are elements in INSPIRE that do not appear in EML. More
information about the result validation procedure is written in annex III. Final product of the
transformation eml2iso.xslt file is pasted in annex IV and might be used to perform transformation
from any EML XML file to ISO INSPIRE compliant XML metadata record. Apache’s Xalan
processor is a free alternative and used extensively in Java servlets to perform XSLT.

In practical terms, a web-based metadata entry system will be used. This system is adapted from
one developed by the US-LTER. It has been modified to meet the needs of INSPIRE and follows the
community profile. It is anticipated that eventually the tool will produce both EML and INSPIRE
compliant XML documents directly. Initially the tool will produce the INSPIRE compliant metadata
through an XSLT as outlined above.
7 References

EML: Ecological Metadata Language (EML) Specification

Michener et al., 1997, Ecological Applications

NATURE-SDIplus Metadata Specification, 2010

Annex I An example of EnvEurope (EML) metadata record coded in XML

Density and Biomass of phytoplankton in Lake Candia (1986) _EML.xml

<?xml version="1.0" encoding="UTF-8"?>
<eml:eml packageId="CNR_IREA_ISE-phyt_candia_ao_1986" system="http://enveurope.eu/dataportal"
xmlns:eml="eml://ecoinformatics.org/eml-2.1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 <access authSystem="http://enveurope.geocatalogue.ise.cnr.it/europe/">
 <allow>
 <principal>EnvEurope (LTER-Europe)</principal>
 <permission>Free</permission>
 </allow>
 <allow>
 <principal>Public</principal>
 <permission>Free upon request</permission>
 </allow>
 </access>
 <dataset>
 <title>Density and Biomass of phytoplankton in Lake Candia (1986)</title>
 <creator>
 <individualName>
 <givenName>Alessandro</givenName>
 <surName>Oggioni</surName>
 </individualName>
 <organizationName>CNR-IREA(Institute for Electromagnetic Sensing of the Environment)</organizationName>
 <electronicMailAddress>a.oggioni@irea.cnr.it</electronicMailAddress>
 </creator>
 <creator>
 <individualName>
 <givenName>Giuseppe</givenName>
 <surName>Morabito</surName>
 </individualName>
 <organizationName>CNR-ISE(Institute of Ecosystem Study)</organizationName>
 <electronicMailAddress>g.morabito@ise.cnr.it</electronicMailAddress>
 </creator>
 <metadataProvider>
 <individualName>
 <givenName>Tomas</givenName>
 <surName>Kliment</surName>
 </individualName>
 <organizationName>CNR-ISMAR (Institute for Marine Sciences)</organizationName>
 <electronicMailAddress>t.kliment@ismar.cnr.it</electronicMailAddress>
 </metadataProvider>
 <metadataDate>2011-11-22</metadataDate>
 <pubDate>2011-11-21</pubDate>
 <language>ita</language>
 <abstract>
 <para>The dataset covers the evolution of biomass and density of phytoplankton in Lake Candia for the year 1986. The sampling was carried out according to sampling classic centre of the lake, the point of maximum depth, using the tear-off bottle. Samples were collected every meter of depth and then integrated into a single rate of water, in order to obtain a sample between 0 and 6 m deep.</para>
 </abstract>
 <keywordSet>
 <keyword>biotic</keyword>
 <keyword>biomass</keyword>
 <keyword>bulk density</keyword>
 <keyword>lakes</keyword>
 <keywordThesaurus>EnvEurope Thesaurus;2012-02-01</keywordThesaurus>
 </keywordSet>
 </dataset>
</eml:eml>
<keyword>phytoplankton</keyword>
<keywordThesaurus>GEMET - Concepts version 2.4;2010-01-13</keywordThesaurus>

<!--<keywordSet>
<keyword>C : Inland surface waters</keyword>
<keyword>C1.3 : Permanent eutrophic lakes, ponds and pools</keyword>
<keywordThesaurus>EUNIS biodiversity database - Habitat types;2009-02-01</keywordThesaurus>
</keywordSet>

<keywordSet>
<keyword>Species distribution</keyword>
<keywordEnvironment Monitoring Facilities</keyword>
<keywordThesaurus>INSPIRE Feature Concept Dictionary;2008-12-05</keywordThesaurus>
</keywordSet>

<keywordSet>
<keyword>Lago di Candia</keyword>
<keywordThesaurus>Getty Thesaurus of Geographic Names;2010-01-13</keywordThesaurus>
</keywordSet>

<intellectualRights>
<section>
<para>Co-authorship on publications resulting from use of the dataset</para>
</section>
</intellectualRights>

<onlineDescription>Sensor Observation Get Observation request</onlineDescription>
[url]http://sos.ise.cnr.it/sos?request=GetObservation&service=SOS&OFFERING=lake_level&observedproperty=urn:ogc:def:property:OGC:1.0.30:lake_level&version=1.0.0&RESPONSEFORMAT=text/xml;subtype=om/1.0.0%22</url>

<onlineDescription>Sensor Observation Service Get Capabilities request</onlineDescription>

<onlineDescription>URI of the resource within the ISE institute subversion server</onlineDescription>

<coverage>
<geographicDescription>Lake Candia, North Italy</geographicDescription>
<boundingCoordinates>
<westBoundingCoordinate>7.88749</westBoundingCoordinate>
<eastBoundingCoordinate>7.93573</eastBoundingCoordinate>
<northBoundingCoordinate>45.34080</northBoundingCoordinate>
<southBoundingCoordinate>45.31461</southBoundingCoordinate>
<boundingAltitudes>
<altitudeMinimum>220</altitudeMinimum>
<altitudeMaximum>226</altitudeMaximum>
<altitudeUnits>meter</altitudeUnits>
</boundingAltitudes>
</boundingCoordinates>
</geographicCoverage>
<temporalCoverage>
<rangeOfDates>
<beginDate>1986-03-06</beginDate>
<endDate>1986-12-17</endDate>
</rangeOfDates>
</temporalCoverage>
<taxonomicCoverage>
 <taxonomicClassification>
 <taxonRankName>Class</taxonRankName>
 <taxonRankValue>Chrysophyceae</taxonRankValue>
 </taxonomicClassification>
 <taxonomicClassification>
 <taxonRankName>Species</taxonRankName>
 <taxonRankValue>Cryptomonas rostrata</taxonRankValue>
 </taxonomicClassification>
 <taxonomicClassification>
 <taxonRankName>Species</taxonRankName>
 <taxonRankValue>Dinobryon divergens</taxonRankValue>
 </taxonomicClassification>
 <taxonomicClassification>
 <taxonRankName>Species</taxonRankName>
 <taxonRankValue>Mallomonas akrokomos</taxonRankValue>
 </taxonomicClassification>
 <taxonomicClassification>
 <taxonRankName>Species</taxonRankName>
 <taxonRankValue>Mallomonas tonsurata</taxonRankValue>
 </taxonomicClassification>
 <taxonomicClassification>
 <taxonRankName>Species</taxonRankName>
 <taxonRankValue>Melosira varians</taxonRankValue>
 </taxonomicClassification>
 <taxonomicClassification>
 <taxonRankName>Species</taxonRankName>
 <taxonRankValue>Microcystis aeruginosa</taxonRankValue>
 </taxonomicClassification>
 <taxonomicClassification>
 <taxonRankName>Species</taxonRankName>
 <taxonRankValue>Pediastrum duplex</taxonRankValue>
 </taxonomicClassification>
 <taxonomicClassification>
 <taxonRankName>Species</taxonRankName>
 <taxonRankValue>Rhabdogloea smithii</taxonRankValue>
 </taxonomicClassification>
 <taxonomicClassification>
 <taxonRankName>Species</taxonRankName>
 <taxonRankValue>Scenedesmus biugatus</taxonRankValue>
 </taxonomicClassification>
 <taxonomicClassification>
 <taxonRankName>Species</taxonRankName>
 <taxonRankValue>Sphaerocystis Schroeteri</taxonRankValue>
 </taxonomicClassification>
 <taxonomicClassification>
 <taxonRankName>Species</taxonRankName>
 <taxonRankValue>Staurastrum gracile</taxonRankValue>
 </taxonomicClassification>
 <taxonomicClassification>
 <taxonRankName>Species</taxonRankName>
 <taxonRankValue>Staurastrum lunatum</taxonRankValue>
 </taxonomicClassification>
 <taxonomicClassification>
 <taxonRankName>Species</taxonRankName>
 <taxonRankValue>Tetraedron minimum</taxonRankValue>
 </taxonomicClassification>
 <taxonomicClassification>
 <taxonRankName>Species</taxonRankName>
 <taxonRankValue>Tetraedron trigonum</taxonRankValue>
 </taxonomicClassification>
 <taxonomicClassification>
 <taxonRankName>Species</taxonRankName>
 <taxonRankValue>Woronichinia robusta</taxonRankValue>
 </taxonomicClassification>
</taxonomicCoverage>
The phytoplankton sampling design was carried out using Ruttner's bottle, equal rates of water were collected every meter of depth between 0 and 4 meters, in the euphotic zone. All the water so taken was mixed together so as to obtain a integrated sample. It has been taken a sub-sample of 100 ml, placed in a glass bottle and fixed with solution Lugol. The quantitative and qualitative analysis of phytoplankton was carried out using inverted microscope accordin to Utermöhl method (1931), bearing in mind the considerations of Lund, Kipling and Le Cren (1958). Utermöhl, H. 1931. Über das umgekehrte mikroscop. Arch. Hydrobiol. Plankt., 22: 643-645. Lund, J.W.G., C. Kipling and E.D. Le Cren. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimation by counting. Hydrobiologia, 11: 143-170.
Annex II EnvEurope (EML) metadata record transformed to INSPIRE (EN ISO) compliant metadata record

Density and Biomass of phytoplankton in Lake Candia (1986) _ISO.xml

```xml
<?xml version="1.0" encoding="UTF-8"?>
  <gmd:language>
  </gmd:language>
  <gmd:hierarchyLevel>
    <gmd:MD_ScopeCode codeListLocation="http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/Codelist/ML_gmxMD_ScopeCode.xml" codeListValue="dataset"></gmd:MD_ScopeCode>
  </gmd:hierarchyLevel>
  <gmd:contact>
    <gmd:CI_ResponsibleParty>
      <gmd:individualName>
        <gco:CharacterString>Tomas Kliment</gco:CharacterString>
      </gmd:individualName>
      <gmd:organisationName>
        <gco:CharacterString>CNR-ISMAR (Institute for Marine Sciences)</gco:CharacterString>
      </gmd:organisationName>
      <gmd:positionName/>
      <gmd:contactInfo>
        <gmd:CI_Contact>
          <gmd:address>
            <gmd:CI_Address>
              <gmd:electronicMailAddress>
                <gco:CharacterString>t.kliment@ismar.cnr.it</gco:CharacterString>
              </gmd:electronicMailAddress>
            </gmd:CI_Address>
          </gmd:address>
          <gmd:onlineResource>
            <gmd:CI_OnlineResource>
              <gmd:linkage/>
            </gmd:CI_OnlineResource>
          </gmd:onlineResource>
        </gmd:CI_Contact>
      </gmd:contactInfo>
    </gmd:CI_ResponsibleParty>
    <gmd:CI_RoleCode codeListLocation="http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/Codelist/ML_gmxCI_RoleCode.xml" codeListValue="pointOfContact">pointOfContact</gmd:CI_RoleCode>
    <gmd:CI_Contact>
      <gmd:address>
        <gmd:CI_Address>
          <gmd:electronicMailAddress>
            <gco:CharacterString>t.kliment@ismar.cnr.it</gco:CharacterString>
          </gmd:electronicMailAddress>
        </gmd:CI_Address>
      </gmd:address>
      <gmd:onlineResource>
        <gmd:CI_OnlineResource>
          <gmd:linkage/>
        </gmd:CI_OnlineResource>
      </gmd:onlineResource>
    </gmd:CI_Contact>
    <gmd:role>
      <gmd:CI_RoleCode codeListLocation="http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/Codelist/ML_gmxCI_RoleCode.xml" codeListValue="pointOfContact">pointOfContact</gmd:CI_RoleCode>
    </gmd:role>
  </gmd:CI_ResponsibleParty>
  <gmd:dateStamp>
    <gco:Date>2011-11-22+01:00</gco:Date>
  </gmd:dateStamp>
  <gmd:identificationInfo>
    <gmd:MD_DataIdentification>
      <gmd:citation>
        <gmd:CI_Citation>
          <gco:CharacterString>Density and Biomass of phytoplankton in Lake Candia (1986)</gco:CharacterString>
        </gmd:CI_Citation>
      </gmd:citation>
    </gmd:MD_DataIdentification>
  </gmd:identificationInfo>
</gmd:MD_Metadata>
```
The dataset covers the evolution of biomass and density of phytoplankton in Lake Candia for the year 1986. The sampling was carried out according to sampling classic centre of the lake, the point of maximum depth, using the tear-off bottle. Samples were collected every meter of depth and then integrated into a single rate of water, in order to obtain a sample between 0 and 6 m deep.
<gmd:thesaurusName><gmd:CI_Citation><gmd:title><gco:CharacterString>GEMET - Concepts version</gco:CharacterString></gmd:title><gmd:date><gmd:CI_Date><gmd:date><gco:Date>2010-01-13</gco:Date></gmd:date><gmd:dateType><gmd:CI_DateTypeCode><gco:CharacterString>publication</gco:CharacterString></gmd:CI_DateTypeCode></gmd:dateType></gmd:CI_Date></gmd:date></gmd:CI_Citation></gmd:thesaurusName><gmd:descriptiveKeywords><gmd:descriptiveKeywords><gmd:MD_Keywords><gmd:keyword><gco:CharacterString>eco system ecology</gco:CharacterString></gmd:keyword></gmd:MD_Keywords><gmd:keyword><gco:CharacterString>phytoplankton</gco:CharacterString></gmd:keyword></gmd:MD_Keywords></gmd:descriptiveKeywords><gmd:descriptiveKeywords><gmd:MD_Keywords><gmd:keyword><gco:CharacterString>C : Inland surface waters</gco:CharacterString></gmd:keyword><gmd:thesaurusName><gmd:CI_Citation><gmd:title><gco:CharacterString>EUNIS biodiversity database - Habitat types</gco:CharacterString></gmd:title><gmd:date><gmd:CI_Date><gmd:date><gco:Date>2009-02-01</gco:Date></gmd:date><gmd:dateType><gmd:CI_DateTypeCode><gco:CharacterString>publication</gco:CharacterString></gmd:CI_DateTypeCode></gmd:dateType></gmd:CI_Date></gmd:date></gmd:CI_Citation></gmd:thesaurusName><gmd:descriptiveKeywords><gmd:descriptiveKeywords><gmd:MD_Keywords><gmd:keyword><gco:CharacterString>C1.3 : Permanent eutrophic lakes, ponds and pools</gco:CharacterString></gmd:keyword></gmd:MD_Keywords></gmd:descriptiveKeywords></gmd:descriptiveKeywords></gmd:MD_Keywords></gmd:thesaurusName>
Species distribution

Environmental Monitoring

Facilities

Dictionary

Names

<gco:CharacterString>Species distribution</gco:CharacterString>
<gco:CharacterString>Environmental Monitoring</gco:CharacterString>

<gmd:thesaurusName>
 <gmd:CI_Citation>
 <gmd:title>
 <gco:CharacterString>INSPIRE Feature Concept</gco:CharacterString>
 </gmd:title>
 <gmd:date>
 <gmd:CI_Date>
 <gmd:dateType>
 <gmd:CI_DateTypeCode codeList="http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/Codelist/ML_gmxCodelists.xml#CI_DateTypeCode" codeListValue="publication">publication</gmd:CI_DateTypeCode>
 </gmd:dateType>
 </gmd:CI_Date>
 </gmd:date>
 </gmd:CI_Citation>
</gmd:thesaurusName>

<gmd:thesaurusName>
 <gmd:CI_Citation>
 <gmd:title>
 <gco:CharacterString>Getty Thesaurus of Geographic Names</gco:CharacterString>
 </gmd:title>
 <gmd:date>
 <gmd:CI_Date>
 <gmd:dateType>
 <gmd:CI_DateTypeCode codeList="http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/Codelist/ML_gmxCodelists.xml#CI_DateTypeCode" codeListValue="publication">publication</gmd:CI_DateTypeCode>
 </gmd:dateType>
 </gmd:CI_Date>
 </gmd:date>
 </gmd:CI_Citation>
</gmd:thesaurusName>

<gmd:thesaurusName>
 <gmd:CI_Citation>
 <gmd:title>
 <gco:CharacterString>Class</gco:CharacterString>
 </gmd:title>
 <gmd:date>
 <gmd:CI_Date>
 <gmd:dateType>
 <gmd:CI_DateTypeCode codeList="http://pending.geotoolkit.org/apidocs/org/geotoolkit/naturesdi/NATSDI_RankNameCode.html" codeListValue="Class">Class</gmd:CI_DateTypeCode>
 </gmd:dateType>
 </gmd:CI_Date>
 </gmd:date>
 </gmd:CI_Citation>
</gmd:thesaurusName>

<gco:CharacterString>Lago di Candia</gco:CharacterString>
<gco:CharacterString>Chrysophyceae</gco:CharacterString>
<gmd:keyword>
 <gco:CharacterString>Lago di Candia</gco:CharacterString>
 <gco:CharacterString>Chrysophyceae</gco:CharacterString>
 <gmd:type>
 <gmd:MD_KeywordTypeCode codeList="http://pending.geotoolkit.org/apidocs/org/geotoolkit/naturesdi/NATSDI_RankNameCode.html" codeListValue="Class">Class</gmd:MD_KeywordTypeCode>
 </gmd:type>
</gmd:keyword>

<gco:CharacterString>Lago di Candia</gco:CharacterString>
<gco:CharacterString>Chrysophyceae</gco:CharacterString>
<gmd:keyword>
 <gco:CharacterString>Jacobsen</gco:CharacterString>
 <gco:CharacterString>Chrysophyceae</gco:CharacterString>
 <gmd:type>
 <gmd:MD_KeywordTypeCode codeList="http://pending.geotoolkit.org/apidocs/org/geotoolkit/naturesdi/NATSDI_RankNameCode.html" codeListValue="Class">Class</gmd:MD_KeywordTypeCode>
 </gmd:type>
</gmd:keyword>

<gco:CharacterString>Environmental Monitoring</gco:CharacterString>
<gco:CharacterString>Species distribution</gco:CharacterString>
<gco:CharacterString>Species distribution</gco:CharacterString>
<gmd:MD_KeywordTypeCode
codeList="http://pending.geotoolkit.org/apidocs/org/geotoolkit/naturesdi/NATSDI_RankNameCode.html"
codeListValue="Species">Species</gmd:MD_KeywordTypeCode>

<gmd:keyword>
<gco:CharacterString>Pediastrum duplex</gco:CharacterString>
</gmd:keyword>

<gmd:keyword>
<gco:CharacterString>Rhabdogloea smithii</gco:CharacterString>
</gmd:keyword>

<gmd:keyword>
<gco:CharacterString>Scenedesmus biyugatus</gco:CharacterString>
</gmd:keyword>

<gmd:keyword>
<gco:CharacterString>Sphaerocystis schroeteri</gco:CharacterString>
</gmd:keyword>

<gmd:keyword>
<gco:CharacterString>Staurastrum gracile</gco:CharacterString>
</gmd:keyword>
<gmd:MD_Keywords>
 <gmd:keyword>
 <gco:CharacterString>Staurastrum lunatum</gco:CharacterString>
 </gmd:keyword>
 <gmd:MD_KeywordTypeCode codeList="http://pending.geotoolkit.org/apidocs/org/geotoolkit/naturesdi/NATSDI_RankNameCode.html" codeListValue="Species">Species</gmd:MD_KeywordTypeCode>
</gmd:descriptiveKeywords>
<gmd:keyword>
 <gco:CharacterString>Tetraedron minimum</gco:CharacterString>
</gmd:keyword>
<gmd:MD_KeywordTypeCode codeList="http://pending.geotoolkit.org/apidocs/org/geotoolkit/naturesdi/NATSDI_RankNameCode.html" codeListValue="Species">Species</gmd:MD_KeywordTypeCode>
</gmd:descriptiveKeywords>
<gmd:keyword>
 <gco:CharacterString>Tetraedron trigonum</gco:CharacterString>
</gmd:keyword>
<gmd:MD_KeywordTypeCode codeList="http://pending.geotoolkit.org/apidocs/org/geotoolkit/naturesdi/NATSDI_RankNameCode.html" codeListValue="Species">Species</gmd:MD_KeywordTypeCode>
</gmd:descriptiveKeywords>
<gmd:keyword>
 <gco:CharacterString>Woronichinia robusta</gco:CharacterString>
</gmd:keyword>
<gmd:MD_KeywordTypeCode codeList="http://pending.geotoolkit.org/apidocs/org/geotoolkit/naturesdi/NATSDI_RankNameCode.html" codeListValue="Species">Species</gmd:MD_KeywordTypeCode>
</gmd:descriptiveKeywords>
<gmd:keyword>
 <gco:CharacterString>Asterionella formosa</gco:CharacterString>
</gmd:keyword>
<gmd:MD_KeywordTypeCode codeList="http://pending.geotoolkit.org/apidocs/org/geotoolkit/naturesdi/NATSDI_RankNameCode.html" codeListValue="Species">Species</gmd:MD_KeywordTypeCode>
</gmd:descriptiveKeywords>
<gmd:keyword>
 <gco:CharacterString>Ceratium hirundinella</gco:CharacterString>
</gmd:keyword>
<gmd:MD_KeywordTypeCode codeList="http://pending.geotoolkit.org/apidocs/org/geotoolkit/naturesdi/NATSDI_RankNameCode.html" codeListValue="Species">Species</gmd:MD_KeywordTypeCode>
</gmd:descriptiveKeywords>
<gmd:descriptiveKeywords>
 <gmd:MD_Keywords>
 <gmd:keyword>
 <gco:CharacterString>Closterium acutum</gco:CharacterString>
 </gmd:keyword>
 <gmd:type>
 <gmd:MD_KeywordTypeCode codeList="http://pending.geotoolkit.org/apidocs/org/geotoolkit/naturesdi/NATSDI_RankNameCode.html" codeListValue="Species"></gmd:MD_KeywordTypeCode>
 </gmd:type>
 </gmd:MD_Keywords>
 <gmd:MD_Keywords>
 <gmd:keyword>
 <gco:CharacterString>Closterium gracile</gco:CharacterString>
 </gmd:keyword>
 <gmd:type>
 <gmd:MD_KeywordTypeCode codeList="http://pending.geotoolkit.org/apidocs/org/geotoolkit/naturesdi/NATSDI_RankNameCode.html" codeListValue="Species"></gmd:MD_KeywordTypeCode>
 </gmd:type>
 </gmd:MD_Keywords>
 <gmd:MD_Keywords>
 <gmd:keyword>
 <gco:CharacterString>Synedra acus</gco:CharacterString>
 </gmd:keyword>
 <gmd:type>
 <gmd:MD_KeywordTypeCode codeList="http://pending.geotoolkit.org/apidocs/org/geotoolkit/naturesdi/NATSDI_RankNameCode.html" codeListValue="Species"></gmd:MD_KeywordTypeCode>
 </gmd:type>
 </gmd:MD_Keywords>
 <gmd:description>
 <gmd:resourceConstraints>
 <gmd:MD_LegalConstraints>
 <gmd:useLimitation>
 <gco:CharacterString>Allowed for EnvEurope (LTER-Europe) with permission type Free</gco:CharacterString>
 </gmd:useLimitation>
 <gmd:useLimitation>
 <gco:CharacterString>Allowed for Public with permission type Free upon request</gco:CharacterString>
 </gmd:useLimitation>
 <gmd:useConstraints>
 <gmd:MD_RestrictionCode codeList="http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/Codelist/gmxCodelists.xml#MD_RestrictionCode" codeListValue="intellectualPropertyRights"/>
 </gmd:useConstraints>
 <gmd:otherConstraints>
 <gco:CharacterString>Co-authorship on publications resulting from use of the dataset</gco:CharacterString>
 </gmd:otherConstraints>
 </gmd:MD_LegalConstraints>
 </gmd:resourceConstraints>
 </gmd:description>
 <gmd:language>
 </gmd:language>
</gmd:descriptiveKeywords>
Observation request
<gmd:CI_OnlineResource>
 <gmd:linkage>
 <gmd:URL>http://sos.ise.cnr.it/sos?service=SOS&request=GetCapabilities</gmd:URL>
 </gmd:linkage>
 <gmd:description>
 Sensor Observation Service Get Capabilities request
 </gmd:description>
</gmd:CI_OnlineResource>

Capabilities request
<gmd:CI_OnlineResource>
 <gmd:linkage>
 </gmd:linkage>
 <gmd:description>
 URI of the resource within the ISE institute subversion server
 </gmd:description>
</gmd:CI_OnlineResource>

sensor Observation Get
<gmd:CI_OnlineResource>
 <gmd:linkage>
 <gmd:URL>http://sos.ise.cnr.it/sos?request=GetObservation&service=SOS&OFFERING=lake_level&observedproperty=urn:ogc:def:property:OGC:1.0.30:lake_level&version=1.0.0&RESPONSEFORMAT=text/xml;subtype=%22om/1.0.0%22</gmd:URL>
 </gmd:linkage>
 <gmd:description>
 Sensor Observation Get Observation request
 </gmd:description>
</gmd:CI_OnlineResource>

Comission Regulation (EU) No 1089/2010 of 23 November 2010 implementing

Methods description: Water column sampling with different levels (depths) for phytoplankton. The phytoplankton sampling design was carried out using Ruttner's bottle, equal rates of water were collected every meter of depth between 0 and 4 meters, in the euphotic zone. All the water so taken was mixed together so as to obtain an integrated sample. It been taken a sub-sample of 100 ml, placed in a glass bottle and fixed with solution Lugol. The quantitative and qualitative analysis of phytoplankton was carried out inverted microscope according to Utermöhl method (1931), bearing in mind the considerations of Lund, Kipling and Le Cren (1958).

Lund, J.W.G., C. Kipling and E.D. Le Cren. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimation by counting. Hydrobiologia, 11: 143-170. Sampling description: Each sample was collected at the point of maximum depth of the lake, incorporating identical aliquot of water taken between 0-2 m, 3 m, 4 m and between 5-6 m deep. The sampling frequency was every month. Instrumentation used: Tear Bottle, year of production 1999, Model number: SJ900AXCD.
Annex III Metadata validation report against INSPIRE and ISO

Sample EML metadata record Density and Biomass of phytoplankton in Lake Candia (1986)_EML.xml (pasted in annex I) has been firstly transformed to ISO form using XSLT file eml2iso.xslt via processors embed in Altova XML Spy and oXygen. The same tools provide also validation functionality against XSD schema either referenced directly from XML file via xsi:schemaLocation attribute in the root element or externally from either local directory or URL schema destination. The file resulting from transformation using oXygen Density and Biomass of phytoplankton in Lake Candia (1986)_ISO_oXygen.xml has been validated against ISO gmd schema with 0 validation errors (figure 4).

The same process (transformation and validation) has been performed also using Altova XML Spy. The new created file Density and Biomass of phytoplankton in Lake Candia (1986)_ISO_Spy.xml has been validated using embedded XML parser with the same results 0 validation errors (Figure 5). In order to check transformation and validation procedures between both tools a file comparison function has been used with positive results. Both transformed files are with the same content and structure. Regarding the validation this provided again good results without any validation errors. This XSD schema has been used for validation: http://schemas.opengis.net/iso/19139/20060504/gmd/gmd.xsd
The second important step of validation procedure was to do the same with INSPIRE validation service. Since we had only 2 metadata record to be validated, we have used web-based client of this service provided via INSPIRE Geoportal web page (http://www.inspire-geoportal.eu/). A web page part metadata validator provides an interface where any user can upload his metadata record in ISO XML form and performs validation against INSPIRE requirements.

Validation against INSPIRE brought positive results for both files: 0 incorrect and 32 correct elements.
Annex IV XSLT transformation file

Eml2iso.xslt

<?xml version="1.0" encoding="UTF-8"?>
<!-
This file was generated by Altova MapForce 2009sp1

YOU SHOULD NOT MODIFY THIS FILE, BECAUSE IT WILL BE
OVERWRITTEN WHEN YOU RE-RUN CODE GENERATION.

Refer to the Altova MapForce Documentation for further details.
http://www.altova.com/mapforce
-->
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmll:xs="http://www.w3.org/2001/XMLSchema-instance" xmlns:acc="eml://ecoinformatics.org/access-2.1.0"
xmll:att="eml://ecoinformatics.org/attribute-2.1.0" xmlns:com="eml://ecoinformatics.org/constraint-2.1.0"
xmll:conv="eml://ecoinformatics.org/coverage-2.1.0" xmlns:dat="eml://ecoinformatics.org/dataTable-2.1.0"
xmll:ds="eml://ecoinformatics.org/dataset-2.1.0" xmlns:doc="eml://ecoinformatics.org/documentation-2.1.0"
xmll:n="eml://ecoinformatics.org/eml-2.1.0" xmlns:ente="eml://ecoinformatics.org/entity-2.1.0"
xmll:ci="eml://ecoinformatics.org/literature-2.1.0" xmlns:md="eml://ecoinformatics.org/methods-2.1.0"
xmll:rp="eml://ecoinformatics.org/project-2.1.0" xmlns:phys="eml://ecoinformatics.org/physical-2.1.0"
xmll:pro="eml://ecoinformatics.org/protocol-2.1.0" xmlns:prot="eml://ecoinformatics.org/protocol-2.1.0"
xmll:res="eml://ecoinformatics.org/resource-2.1.0" xmlns:sw="eml://ecoinformatics.org/software-2.1.0"
xmll:src="eml://ecoinformatics.org/spatialRaster-2.1.0" xmlns:spref="eml://ecoinformatics.org/spatialReference-2.1.0"
xmll:ss="eml://ecoinformatics.org/spatialVector-2.1.0" xmlns:sp="eml://ecoinformatics.org/spatialProcedure-2.1.0"
xmll:txt="eml://ecoinformatics.org/text-2.1.0" xmlns:unit="eml://ecoinformatics.org/units-2.1.0"
xmll:grp="http://www.altova.com/Mapforce/grouping" exclude-result-prefixes="acc att cit con cov dat doc ds ent fn grp md n phys proj res rp sp spref sr sv sw ttx unit v xs xsi xsl">
 <xsl:output method="xml" encoding="UTF-8" indent="yes"/>
 <xsl:function name="grp:getKey06fb0ee8">
 <xsl:param name="cur"/>
 <xsl:for-each select="$cur/calendarDate">
 <xsl:sequence select="xs:string(xs:decimal())"/>
 </xsl:for-each>
 </xsl:function>
 <xsl:function name="grp:getKey072a39c8">
 <xsl:param name="cur"/>
 <xsl:for-each select="$cur/individualName">
 <xsl:variable name="var56_individualName" as="node()" select="."/>
 <xsl:for-each select="givenName">
 <xsl:sequence select="fn:concat(fn:concat(xs:string(), ','), xs:string($var56_individualName/surName))"/>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:function>
 <xsl:function name="grp:getKey071d880">
 <xsl:param name="cur"/>
 <xsl:for-each select="$cur/individualName">
 <xsl:variable name="var92_individualName" as="node()" select="."/>
 <xsl:for-each select="givenName">
 <xsl:sequence select="fn:concat(fn:concat(xs:string(), ','), xs:string($var92_individualName/surName))"/>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:function>
 <xsl:function name="grp:getKey070b0b80">
 <xsl:param name="cur"/>
 <xsl:for-each select="$cur/individualName">
 <xsl:variable name="var130_individualName" as="node()" select="."/>
 <xsl:for-each select="givenName">
 <xsl:sequence select=""/>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:function>
</xsl:stylesheet>
<xs:sequence select="fn:concat(fn:concat(xs:string(.), ' '), xs:string($var130_individualName/surname))"/>
</xs:for-each>
</xs:function>

<xsl:function name="grp:0732a750">
 <xs:param name="cur"/>
 <xs:for-each select="$cur/individualName">
 <xs:variable name="var166_individualName" as="node" select="."/>
 <xs:for-each select="givenName">
 <xs:sequence select="fn:concat(fn:concat(xs:string(.), ' '), xs:string($var166_individualName/surname))"/>
 </xs:for-each>
 </xs:for-each>
</xs:function>

<xsl:function name="grp:073b6018">
 <xs:param name="cur"/>
 <xs:for-each select="$cur/keywordThesaurus">
 <xs:sequence select="xs:string(.)"/>
 </xs:for-each>
</xs:function>

<xsl:function name="grp:070d7e38">
 <xs:param name="cur"/>
 <xs:for-each select="$cur/keyword">
 <xs:sequence select="xs:string(.)"/>
 </xs:for-each>
</xs:function>

<xsl:function name="grp:07172698">
 <xs:param name="cur"/>
 <xs:for-each select="$cur/taxonRankValue">
 <xs:sequence select="xs:string(.)"/>
 </xs:for-each>
</xs:function>

<xsl:function name="grp:070ca570">
 <xs:param name="cur"/>
 <xs:for-each select="$cur/allow">
 <xs:variable name="var221_allow" as="node" select="."/>
 <xs:for-each select="principal">
 <xs:variable name="var223_principal" as="node" select="."/>
 <xs:for-each select="$var221_allow/permission">
 <xs:sequence select="fn:concat(fn:concat(xs:string(.), ' '), xs:string($var223_principal), ' with permission type '), xs:string(xs:string(.))"/>
 </xs:for-each>
 </xs:for-each>
 </xs:for-each>
</xs:function>

<xsl:function name="grp:0711d6f8">
 <xs:param name="cur"/>
 <xs:for-each select="$cur/deny">
 <xs:variable name="var231_deny" as="node" select="."/>
 <xs:for-each select="principal">
 <xs:variable name="var233_principal" as="node" select="."/>
 <xs:for-each select="$var231_deny/permission">
 <xs:sequence select="fn:concat(fn:concat(xs:string(.), ' '), xs:string($var233_principal), ' with restriction type '), xs:string(xs:string(.))"/>
 </xs:for-each>
 </xs:for-each>
 </xs:for-each>
</xs:function>

<xsl:function name="grp:0722c840">
 <xs:param name="cur"/>
 <xs:for-each select="$cur/url">
 <xs:sequence select="xs:string(xs:anyURI(.))"/>
 </xs:for-each>
</xs:function>

<xsl:template match="/">
 <gmd:MD_Metadata>

appendix 2
<xsl:attribute name="xs:schemaLocation" separator=" ">
 <xsl:sequence select="http://www.isotc211.org/2005/gmd
 http://schemas.opengis.net/iso/19139/20060504/gmd/gmd.xsd"/>
</xsl:attribute>

<xs:variable name="var1_instance" as="node()" select="."/>
<gd:language>
 <gd:LanguageCode>
 <xsl:attribute name="codeList">
 </xsl:attribute>
 <xsl:attribute name="codeListValue">
 <xsl:sequence select="xs:string(xs:anyURI('eng'))"/>
 </xsl:attribute>
 </gd:LanguageCode>
</gd:language>
<gd:hierarchyLevel>
 <gd:MD_ScopeCode>
 <xsl:attribute name="codeList">
 <xsl:sequence select="xs:string(xs:anyURI('http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/Codelists.xml#MD_ScopeCode'))"/>
 </xsl:attribute>
 <xsl:attribute name="codeListValue">
 <xsl:sequence select="xs:string(xs:anyURI('dataset'))"/>
 </xsl:attribute>
 </gd:MD_ScopeCode>
</gd:hierarchyLevel>
<gd:contact>
 <gd:CI_ResponsibleParty>
 <xsl:for-each select="$var1_instance/n:eml/dataset/metadataProvider">
 <xsl:variable name="var2_metadataProvider" as="node()" select="."/>
 <xsl:if test="$var2_metadataProvider/@id">
 <xsl:attribute name="id">
 <xsl:sequence select="xs:string(xs:ID(xs:string(@id)))"/>
 </xsl:attribute>
 </xsl:if>
 </xsl:for-each>
 </gd:CI_ResponsibleParty>
</gd:contact>
<gd:individualName>
 <xsl:for-each select="$var1_instance/n:eml/dataset/metadataProvider/individualName">
 <xsl:variable name="var4_individualName" as="node()" select="."/>
 <xsl:for-each select="givenName">
 <gco:CharacterString>
 <xsl:sequence select="fn:concat(fn:concat(xs:string(.), ' '), xs:string($var4_individualName/surName))"/>
 </gco:CharacterString>
 </xsl:for-each>
 </xsl:for-each>
</gd:individualName>
<gd:organisationName>
 <xsl:for-each select="$var1_instance/n:eml/dataset/metadataProvider/organisationName">
 <gco:CharacterString>
 <xsl:sequence select=""/>
 </gco:CharacterString>
 </xsl:for-each>
</gd:organisationName>
<gd:positionName>
 <xsl:for-each select="$var1_instance/n:eml/dataset/metadataProvider/positionName">
 <gco:CharacterString>
 <xsl:sequence select=""/>
 </gco:CharacterString>
 </xsl:for-each>
</gd:positionName>
<xsl:for-each select="$var1_instance/n:eml/dataset/metadataProvider/electronicMailAddress" group-by="xs:string(.)">
 <xsl:variable name="var30_cur_result_groupby" as="xs:string" select="current-grouping-key()"/>
 <gmd:electronicMailAddress>
 <gco:CharacterString>
 <xsl:sequence select="xs:string(.)"/>
 </gco:CharacterString>
 </gmd:electronicMailAddress>
</xsl:for-each-group>

<xsl:for-each select="$var1_instance/n:eml/dataset/metadataProvider/onlineUrl">
 <gmd:URL>
 <xsl:sequence select="xs:string(xs:anyURI(.))"/>
 </gmd:URL>
</xsl:for-each>

<xsl:for-each select="$var1_instance/n:eml/dataset/metadataProvider/onlineResource">
 <gmd:CI_OnlineResource>
 <gmd:linkage>
 <xsl:for-each select="$var1_instance/n:eml/dataset/metadataProvider/onlineUrl">
 <gmd:URL>
 <xsl:sequence select="xs:string(xs:anyURI(.))"/>
 </gmd:URL>
 </xsl:for-each>
 </gmd:linkage>
 </gmd:CI_OnlineResource>
</xsl:for-each>

<xsl:for-each select="$var1_instance/n:eml/dataset/metadataProvider/CI_Contact">
 <gmd:CI_ResponsibleParty>
 <gmd:CI_RoleCode>
 <xsl:attribute name="codeListValue">pointOfContact</xsl:attribute>
 </gmd:CI_RoleCode>
 <gmd:CI_ResponsibleParty>
 <gmd:dateStamp>
 <gco:Date>
 <xsl:sequence select="xs:string(xs:string(fn:current-date()))"/>
 </gco:Date>
 </gmd:dateStamp>
 <gmd:identificationInfo>
 <gmd:MD_DataIdentification>
 <gmd:citation>
 <gmd:CI_Citation>
 <gmd:title>
 <xsl:for-each select="$var1_instance/n:eml/dataset/title">
 <xsl:sequence select="xs:string(.)"/>
 </xsl:for-each>
 </gmd:title>
 </gmd:CI_Citation>
 <gmd:alternateTitle>
 <xsl:for-each select="$var1_instance/n:eml/dataset/shortName">
 <gco:CharacterString>
 <xsl:sequence select="xs:string(.)"/>
 </gco:CharacterString>
 </xsl:for-each>
 </gmd:alternateTitle>
 </gmd:citation>
 </gmd:MD_DataIdentification>
 </gmd:identificationInfo>
 </gmd:CI_RoleCode>
 </gmd:CI_ResponsibleParty>
</xsl:for-each>
<xsl:variable name="var62_cur_result" as="xs:string"><gco:CharacterString><gmd:individualName><gmd:organisationName><xsl:for-each select="$var62_cur_result_groupby" group-by="xs:string(.)"><gco:CharacterString><xsl:sequence select="xs:string(.)"/></gco:CharacterString></xsl:for-each><gmd:organisationName><gmd:positionName><xsl:for-each select="$var61_cur_result_groupby/organizationName" group-by="xs:string(.)"><gco:CharacterString><xsl:sequence select="xs:string(.)"/></gco:CharacterString></xsl:for-each></gmd:positionName><gmd:contactInfo><gmd:CI_Contact><gmd:phone><gco:CharacterString><xsl:for-each group select="$var61_cur_result_groupby/phone" group-by="xs:string(.)" name="var72_cur_result_groupby" as="xs:string" select="current-grouping-key()"><gco:CharacterString><xsl:sequence select="$var72_cur_result_groupby"/></gco:CharacterString></xsl:for-each-group></gmd:CI_Telephone><gmd:address><gmd:CI_Address><xsl:for-each group select="$var61_cur_result_groupby/address/deliveryPoint" group-by="xs:string(.)" name="var76_cur_result_groupby" as="xs:string" select="current-grouping-key()"><gmd:deliveryPoint><gco:CharacterString><xsl:sequence select="$var76_cur_result_groupby"/></gmd:deliveryPoint><gco:CharacterString></xsl:for-each-group><gmd:CI_Address><gmd:city><xsl:for-each group select="$var61_cur_result_groupby/address/city" name="var76_cur_result_groupby" as="xs:string" select="current-grouping-key()"><gco:CharacterString><xsl:sequence select="xs:string(.)"/></gmd:city></xsl:for-each-group></gmd:CI_Address></gmd:address></gmd:contactInfo></gmd:CI_Telephone></gmd:CI_Telephone></gmd:CI_Contact></gmd:phone></gmd:address></gmd:CI_Address></gmd:CI_Telephone></gmd:positionName></gmd:organisationName></gmd:individualName></gco:CharacterString></xsl:for-each-group></gmd:CI_Telephone></gmd:CI_Address></gmd:organisationName></gmd:individualName></gco:CharacterString></xsl:for-each-group>
<xsl:for-each select="$var61_cur_result_groupby/onlineUrl">
 <gmd:URL>
 <xsl:sequence select="xs:string(xs:anyURI())"/>
 </gmd:URL>
</xsl:for-each>
</gmd:linkage>
</gmd:CI_OnlineResource>
</gmd:onlineResource>
</gmd:CI_Contact>
</gmd:contactInfo>
</gmd:role>
</gmd:CI_RoleCode>
<xsl:attribute name="codeList">
</xsl:attribute>
<xsl:attribute name="codeListValue">
 <xsl:sequence select="xs:string(xs:anyURI('originator'))"/>
</xsl:attribute>
<xsl:attribute name="originator"/>
</gmd:CI_RoleCode>
</gmd:CI_ResponsibleParty>
</gmd:pointOfContact>
</xsl:for-each-group>
</xsl:for-each-group select="$var1_instance/n:eml/dataset/associatedParty"

<xsl:variable name="var97_cur_result_groupby" as="item()">
 <xsl:variable name="var100_cur_result_groupitems" as="item()" select=".="/>
 <xsl:if test="$var100_cur_result_groupitems/@id">
 <xsl:attribute name="id">
 <xsl:sequence select="xs:ID(xs:string(@id))"/>
 </xsl:attribute>
 </xsl:if>
</xsl:for-each>
</gmd:CI_ResponsibleParty>
</gmd:pointOfContact>
</xsl:for-each-group>
</xsl:for-each-group select="$var1_instance/n:eml/dataset/associatedParty"

<xsl:variable name="var98_cur_result_groupby" as="xs:string">
 <xsl:variable name="var98_cur_result_grouping-key" as="xs:string">
 <gmd:pointOfContact>
 <gmd:CI_ResponsibleParty>
 <gmd:individualName>
 <gco:CharacterString>
 <xsl:sequence select="$var98_cur_result_grouping-key"/>
 </gco:CharacterString>
 </gmd:individualName>
 <gmd:organisationName>
 <gco:CharacterString>
 <xsl:sequence select="$var98_cur_result_grouping-key"/>
 </gco:CharacterString>
 </gmd:organisationName>
 </gmd:CI_ResponsibleParty>
 </gmd:pointOfContact>
 </xsl:variable>
</gmd:CI_RoleCode>
</gmd:CI_ResponsibleParty>
</gmd:pointOfContact>
</xsl:for-each-group>
</xsl:for-each-group select="$var1_instance/n:eml/dataset/associatedParty"

<xsl:variable name="var97_cur_result_groupby" as="item()">
 <xsl:variable name="var100_cur_result_groupitems" as="item()" select="."/>
 <xsl:if test="$var100_cur_result_groupitems/@id">
 <xsl:attribute name="id">
 <xsl:sequence select="xs:ID(xs:string(@id))"/>
 </xsl:attribute>
 </xsl:if>
</xsl:for-each>
</gmd:CI_ResponsibleParty>
</gmd:pointOfContact>
</xsl:for-each-group>
</xsl:for-each-group select="$var1_instance/n:eml/dataset/associatedParty"

<xsl:variable name="var98_cur_result_groupby" as="xs:string">
 <xsl:variable name="var98_cur_result_grouping-key" as="xs:string">
 <gmd:pointOfContact>
 <gmd:CI_ResponsibleParty>
 <gmd:individualName>
 <gco:CharacterString>
 <xsl:sequence select="$var98_cur_result_grouping-key"/>
 </gco:CharacterString>
 </gmd:individualName>
 <gmd:organisationName>
 <gco:CharacterString>
 <xsl:sequence select="$var98_cur_result_grouping-key"/>
 </gco:CharacterString>
 </gmd:organisationName>
 </gmd:CI_ResponsibleParty>
 </gmd:pointOfContact>
 </xsl:variable>
</gmd:CI_RoleCode>
</gmd:CI_ResponsibleParty>
</gmd:pointOfContact>
</xsl:for-each-group>
</xsl:for-each-group select="$var1_instance/n:eml/dataset/associatedParty"
<xsl:sequence select="xs:string(.)"/>

<xsl:for-each select="$var97_cur_result_groupby/positionName">
 <xsl:variable name="var108_cur_result_groupby" as="xs:string" select="current-grouping-key()"/>
 <gmd:organisationName>
 <gco:CharacterString>
 <xsl:sequence select="xs:string(.)"/>
 </gco:CharacterString>
 </gmd:organisationName>
 <s1l:for-each select="xs:string(.)"/>

 <gmd:positionName>
 <gmd:organisat>
 <gmd:positionName>
 <gco:CharacterString>
 <xsl:sequence select="xs:string(.)"/>
 </gco:CharacterString>
 </gmd:positionName>
 </gmd:organisat>
 </gmd:positionName>

 <gmd:contactInfo>
 <gmd:CI_Contact>
 <gmd:phone>
 <gmd:CI_Telephone>
 <gmd:voice>
 <gco:CharacterString>
 <xsl:sequence select="$var108_cur_result_groupby"/>
 </gco:CharacterString>
 </gmd:voice>
 </gmd:CI_Telephone>
 </gmd:phone>
 </gmd:CI_Contact>
 </gmd:contactInfo>

 <gmd:CI_Telephone>
 <xsl:for-each-group select="$var97_cur_result_groupby/phone" group-by="xs:string(.)">
 <xsl:variable name="var112_cur_result_groupby" as="xs:string" select="current-grouping-key()"/>
 <gmd:address>
 <gmd:CI_Address>
 <gmd:deliveryPoint>
 <gco:CharacterString>
 <xsl:sequence select="$var112_cur_result_groupby"/>
 </gco:CharacterString>
 </gmd:deliveryPoint>
 </gmd:CI_Address>
 </gmd:address>
 </xsl:for-each-group>
 </gmd:CI_Telephone>

 <xsl:for-each-group select="$var97_cur_result_groupby/address/deliveryPoint" group-by="xs:string(.)">
 <xsl:variable name="var112_cur_result_groupby" as="xs:string" select="current-grouping-key()"/>
 <gmd:deliveryPoint>
 <gco:CharacterString>
 <xsl:sequence select="$var112_cur_result_groupby"/>
 </gco:CharacterString>
 </gmd:deliveryPoint>
 </xsl:for-each-group>

 <gmd:ci:CI_Telephone>
 <xsl:for-each-group select="$var97_cur_result_groupby/address/city" group-by="xs:string(.)">
 <xsl:variable name="var112_cur_result_groupby" as="xs:string" select="current-grouping-key()"/>
 <gmd:city>
 <gco:CharacterString>
 <xsl:sequence select="xs:string(.)"/>
 </gco:CharacterString>
 </gmd:city>
 </xsl:for-each-group>
 </gmd:ci:CI_Telephone>
</xsl:for-each-group>
<gmd:administrativeArea>
 <gmd:postalCode>
 <xsl:for-each select="$var135_cur_result_groupby/address/postalCode">
 <gco:CharacterString>
 <xsl:sequence select="xs:string(.)"/>
 </gco:CharacterString>
 </xsl:for-each>
 </gmd:postalCode>
</gmd:administrativeArea>

<xsl:for-each select="$var135_cur_result_groupby/address/country">
 <gco:CharacterString>
 <xsl:sequence select="xs:string(.)"/>
 </gco:CharacterString>
</xsl:for-each>

<xsl:for-each-group select="$var135_cur_result_groupby/electronicMailAddress" group-by="xs:string(.)">
 <gmd:electronicMailAddress>
 <gco:CharacterString>
 <xsl:sequence select="$var162_cur_result_groupby"/>
 </gco:CharacterString>
 </gmd:electronicMailAddress>
</xsl:for-each-group>

<xsl:for-each select="$var135_cur_result_groupby/onlineUrl">
 <gmd:URL>
 <xsl:sequence select="xs:string(xs:anyURI(.))"/>
 </gmd:URL>
</xsl:for-each>
<gco:CharacterString>
 <xsl:sequence select="xs:string(.)"/>
</gco:CharacterString>
</xsl:for-each>
</gmd:country>
<gmd:electronicMailAddress>
 <xsl:for-each select="$var171_cur_result_groupby/electronicMailAddress">
 <gco:CharacterString>
 <xsl:sequence select="xs:string(.)"/>
 </gco:CharacterString>
 </xsl:for-each>
</gmd:electronicMailAddress>
</gmd:CI_Address>
</gmd:address>
</gmd:CI_OnlineResource>
</gmd:linkage>
<xsl:for-each select="$var171_cur_result_groupby/onlineUrl">
 <gmd:URL>
 <xsl:sequence select="xs:string(xs:anyURI(.))"/>
 </gmd:URL>
</xsl:for-each>
</gmd:linkage>
</gmd:CI_OnlineResource>
</gmd:CI_ResponsibleParty>
<xsl:for-each-group>
 <xsl:attribute name="codeList">
 </xsl:attribute>
 <xsl:attribute name="codeListValue">
 <xsl:sequence select="xs:string(xs:anyURI('publisher'))"/>
 </xsl:attribute>
</xsl:for-each-group>
<xsl:for-each-group select="$var1_instance/n:eml/dataset/intellectualRights" group-by="fn:string-join(xs:string(.), ",")"/>
<xsl:variable name="var244_cur_result_groupby" as="xs:string" select="current-grouping-key()"/>
<xsl:variable name="var244_cur_result_groupby" as="xs:string" select="current-grouping-key()"/>
<xsl:variable name="var248_cur_result_groupby" as="xs:string" select="current-grouping-key()"/>
<xsl:for-each select="$var1_instance/n:eml/dataset/coverage/geographicCoverage/boundingCoordinates">
</xsl:for-each>

<xsl:for-each select="$var1_instance/n:eml/dataset/coverage/geographicCoverage/boundingCoordinates">
 <gmd:northBoundLatitude><gco:Decimal><xsl:sequence select="xs:string(xs:decimal(northBoundingCoordinate))"/></gco:Decimal></gmd:northBoundLatitude>
</xsl:for-each>

<xsl:for-each select="$var1_instance/n:eml/dataset/coverage/temporalCoverage/rangeOfDates/beginDate/calendarDate">
 <gml:beginPosition><xsl:sequence select="xs:string(xs:string(fn:concat(xs:string(xs:string(.)), 'T00:00:00'))")/></gml:beginPosition>
</xsl:for-each>

<xsl:for-each select="$var1_instance/n:eml/dataset/coverage/temporalCoverage/rangeOfDates/endDate/calendarDate">
 <gml:endPosition><xsl:sequence select="xs:string(xs:string(fn:concat(xs:string(xs:string(.)), 'T00:00:00'))")/></gml:endPosition>
</xsl:for-each>

<xsl:for-each select="$var1_instance/n:eml/dataset/coverage/geographicCoverage/boundingCoordinates/boundingAltitudes">
 <gco:Real><xsl:sequence select="xs:string(xs:double(altitudeMinimum))"/></gco:Real>
</xsl:for-each>

<xsl:for-each select="$var1_instance/n:eml/dataset/coverage/geographicCoverage/boundingCoordinates/boundingAltitudes">
 <gco:Real><xsl:sequence select="xs:string(xs:double(altitudeMaximum))"/></gco:Real>
</xsl:for-each>
<xsl:attribute name="gml:id">
 <xs:string ID='crs.msl_height'/>
</xsl:attribute>

<xsl:attribute name="codeSpace">
 <xs:string anyURI='urn:ogc:def:crs:EPSG'/>
</xsl:attribute>

<xsl:sequence select="'5714'"/>

<xsl:sequence select="''"/>

<xsl:sequence select="''"/>

<xsl:sequence select="''"/>

<gmd:verticalCS/>

<gmd:verticalDatum/>

<xsl:for-each select="$var1_instance/n:eml/dataset/additionalInfo">
 <xsl:sequence select="xs:string(.)"/>
</xsl:for-each>

<xsl:variable name="var266_map_select_eml" as="xs:string">
 <xs:for-each-group select="$var1_instance/n:eml/dataset/distribution/online" group-by="grp:07722c840(.)">
 <xs:variable name="var272_cur_result_groupby" as="item()" select="current-group()"/>
 <xs:variable name="var273_cur_result_groupby" as="xs:string" select="current-grouping-key()"/>
 <gmd:onLine>
 <gmd:CI_OnlineResource>
 <gmd:linkage>
 <gmd:URL>
 <xs:string anyURI='$var273_cur_result_groupby' />
 </gmd:URL>
 <gmd:linkage>
 <gmd:description>
 <geo:CharacterString>
 <gmd:MD_DigitalTransferOptions>
 <gmd:MD_Distribution>
 <gmd:transferOptions>
 <xs:for-each-group select="$var1_instance/n:eml/dataset/distribution/online" group-by="grp:07722c840(.)">
<xsl:for-each select="$var1_instance/n:eml/dataset/methods/methodStep/instrumentation">
 <xsl:variable name="var280_map_select_eml" as="xs:string*>">
 <xsl:for-each select="$var1_instance/n:eml/dataset/methods/methodStep/description">
 <xsl:sequence select="xs:string(.)"/>
 </xsl:for-each>
 </xsl:variable>

 <xsl:variable name="var281_map_select_eml" as="xs:string*>">
 <xsl:for-each select="$var1_instance/n:eml/dataset/methods/sampling/samplingDescription">
 <xsl:sequence select="xs:string(.)"/>
 </xsl:for-each>
 </xsl:variable>

</xsl:for-each>
</xsl:stylesheet>
Annex V MapForce mapping report EML2ISO