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1 Executive summary 

During the last several decades, a large proportion of the planet's terrestrial surface has 

transformed from natural ecosystems to human-dominated systems.  These land-use 

dynamics affect ecosystems’ soil quality and health.  The current study was conducted at the 

desert fringe of the northern Negev, Israel, and strived to assess and compare the soil quality 

in three different land-use types (afforestation, traditional grazing, and agro-pastoral) that 

were changed from managed to unmanaged or vice versa (e.g., shrubland was transformed 

to a planted forest; pastoral grazing to natural shrubland with no grazing; and agro-pastoral 

to abandoned agricultural).  The overall aim of this research is twofold: (1) to evaluate the 

ability of reflectance spectroscopy to detect changes in 14 soil physical, biological, and 

chemical properties and their derived Soil Quality Index (SQI) across the transformed land 

uses; and (2) to develop a Spectral Soil Quality Index (SSQI) toward applying the technique 

of reflectance spectroscopy as a diagnostic tool of soil quality.  To achieve these objectives, 

several mathematical/statistical procedures, consisting of a series of operations, were 

implemented, including a principal component analysis (PCA), a partial least squares – 

regression (PLS-R), and a partial least squares – discriminate analysis (PLS-DA).  The PLS-

R’s most suitable models successfully predicted soil properties (R2 > 0.80; ratio of 

performance to deviation (RPD) > 2.0), including sand-silt-clay content, NH4, NO3, and pH.  

Moderately well-predicted soil properties (0.50 < R2 < 0.80; RPD > 2) were residual water, 

soil organic matter, electric conductivity, and potassium.  Poor validation (R2 < 0.50; RPD < 

2) results were obtained for potential active carbon, phosphorus, and hydraulic conductivity.  

In addition, the PLS-R model predicted the SQI in the transformed land uses.  The 

correlations between the predicted spectral values of the soil properties and the SQI ranged 

between 0.65 < R2 < 0.81 with RPD > 2.  The PLS-DA model was used to develop the SSQI 

model.  The correlations between the SSQI and the SQI ranged between 0.66 < R2 < 0.74 in 

the different land uses.  This study underscores the potential application of reflectance 

spectroscopy as a reliable diagnostic screening tool for assessing soil quality.  The 

classification of soils into spectral definitions provides a basis for a spatially explicit and 

quantitative approach for developing the SSQI.  The SSQI can be used to assess hot spots 

of change in areas of transformed land use and to identify soil degradation. 

2  Introduction 

Worldwide observations have confirmed that during the last several decades, a large 

proportion of the planet's terrestrial surface has transformed from natural ecosystems to 

human-dominated systems  (e.g., de Chazal and Rounsevell, 2009; Defries et al., 2004; 

Foley J et al., 2005; Goldstein et al., 2012; Maestas et al., 2003).  These land-use dynamics 

are so pervasive that they significantly affect key aspects of ecosystem structures, functions, 

and services (Adeel et al., 2005).  Accordingly, altering ecosystem services affects the ability 

of biological systems to support human needs (Metzger et al., 2006; Vitousek et al., 1997) 

and also modifies ecosystem structure and function by changing  biodiversity, productivity, 

and soil quality (Matson et al., 1997; Tscharntke et al., 2005).  Recent assessments of the 

ecosystem functions of soils and their importance for global sustainability underscore the 

importance of the management of soil resources for different land uses for present and future 
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societal welfare (Adeel et al., 2005; Andrews et al., 2002).  The concept of soil quality is 

related to the capacity of the soil to function in supporting important ecosystem services 

(Idowu et al., 2008; Idowu et al., 2009).   Soil quality involves physical, biological, and 

chemical attributes that are merged together to indicate soil functioning and health (Andrews 

et al., 2002; Gugino et al., 2009).  However, since a practical assessment of soil quality 

requires the integrated consideration of key soil properties and their variations in space and 

time, it remains a challenging task (Doran and Parkin, 1994).  

Recent studies have proposed several conceptual frameworks for monitoring soil quality 

(e.g., Andrews et al., 2004; Idowu et al., 2008; Idowu et al., 2009; Karlen et al., 2001; Karlen 

et al., 1997; Masto et al., 2008; Masto et al., 2007; Schindelbeck et al., 2008; Velasquez et 

al., 2007).  These frameworks usually share the common initial step of the choice of a 

minimum dataset (MDS) composed of physical, biological, and chemical variables that are 

the essential properties in terms of soil functioning (Rezaei et al., 2006).  The soil attributes 

are selected from the MDS for their suitability in assessing a particular soil function (Andrews 

et al., 2004), a specific soil ecosystem service (Velasquez et al., 2007), or a key threat to 

soils (Morvan et al., 2008).  Each indicative soil property is normalized to a unitless score 

and, finally, integrated into a Soil Quality Index (SQI) value (Andrews et al., 2004; Andrews et 

al., 2002; Idowu et al., 2008; Karlen et al., 1997).  However, because many soil analyses are 

involved, monitoring soil quality indices at different scales and land uses remains expensive, 

as well as time and labor consuming, when using the standard procedures (Cécillon et al., 

2009a). 

By contrast, different aspects of soil quality can be assessed by reflectance spectroscopy 

techniques, i.e., measuring the interaction between radiated energy and the matter along the 

reflected electromagnetic spectrum.  Reflectance spectroscopy that include the visible (VIS, 

400-700 nm), near-infrared (NIR, 700-1100 nm), and shortwave infrared (SWIR, 1100-2500 

nm) spectrum is a rapid, non-destructive, reproducible, and cost-effective analytical method 

(Ben-Dor and Banin, 1994; Ben-Dor and Banin, 1995).  Reflectance and absorbance signals 

result from vibrations in C–H, O–H, or N–H chemical bonds, and provide information about 

the proportion of each element in the analyzed sample (Ciurczack, 2001).  Recent advances 

in soil analysis demonstrate that reflectance spectroscopy is a robust analytical technique 

suited for rapid and simultaneous analysis of the abovementioned soil attributes (Awiti et al., 

2008; Cécillon et al., 2009a; Odlare et al., 2005; Velasquez et al., 2007; Velasquez et al., 

2005). Researchers have successfully predicted several soil variables, such as water 

content, soil organic carbon (SOC), inorganic carbon, total nitrogen, cation exchange 

capacity (CEC), texture (including sand, silt, and clay fractions), pH, EC, potassium (K), 

magnesium (Mg), calcium (Ca), zinc (Zn), iron (Fe), and manganese (Mn), with various levels 

of prediction accuracy (e.g., Ben-Dor and Banin, 1995; Brown et al., 2006; Cécillon et al., 

2008; Cécillon et al., 2009b; Janik et al., 1998; Shepherd and Walsh, 2002; Viscarra Rossel 

et al., 2006). 

Although the potential of reflectance spectroscopy as a technique for the rapid and 

simultaneous prediction of soil properties is rather clear, the challenge is to adapt the 

application of spectroscopy toward a diagnostic screening tool that can aid the development 

of reliable, specific spectral definitions to characterize soil health for environmental 

management.  In addition, using spectroscopy to assess the impact of changes in land use 

on soil properties can also help to detect environmental change.  Therefore, the evaluation of 
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soil quality using spectroscopy as a way to generate diagnostic indices can be used for land-

use management.  Shepherd and Walsh (2002) discussed the potential of soil spectroscopy 

for risk-based assessments of the effects of land use and land management on soil 

conditions.  Vågen et al. (2006) developed a spectral fertility index and used it to investigate 

the effects of land use and time since forest conversion on soil conditions in Madagascar.  

Awiti et al. (2008) developed a spectral soil condition classification method to assess tropical 

forest-cropland soils in Kenya.  The classification that Awiti et al. (2008) developed of soils 

into spectrally defined condition classes provides a basis for spatially explicit and quantitative 

case definitions for poor or degraded soil conditions.  Such approaches need more 

validations, particularly to test the application of reflectance spectroscopy for detecting 

changes in soil condition or quality due to management.  

Our study strived to assess and compare soil quality in different transformed land uses using 

direct laboratory analyses of soil physical, biological, and chemical properties, as well as 

through indirect spectral measurements.  The overall aim of this research is twofold: (1) to 

evaluate the ability of reflectance spectroscopy to detect changes in soil properties across 

transformed land uses; and (2) to develop a Spectral Soil Quality Index (SSQI) toward 

applying the reflectance spectroscopy technique as a diagnostic tool of soil health.  To 

achieve these objectives, several mathematical/statistical procedures, consisting of a series 

of operations, were used, including a principal component analysis (PCA) for establishing the 

SQI based on the soil physical, biological, and chemical properties (Fig. 1, step 1); a partial 

least squares – regression (PLS-R) to relate spectral reflectance for measuring soil 

properties and (SQI) scoring (Fig. 1, steps 2 and 3); and a partial least squares – 

discriminate analysis (PLS-DA) to relate spectral reflectance classification to different land-

use categories and to develop the SSQI using a scoring function (Fig. 1, steps 4-5). The last 

operation involved a correlation between the SQI and the developed SSQI (Fig. 1, steps 6).  

 

Figure 1. The scheme for assessing the spectral soil quality index (SSQI) and the soil quality 
index (SQI) by laboratory and spectroscopy measurements in different land-use categories.  
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3 Materials and Methods 

3.1 Site description 

Measuring the response of soil condition to management over long time scales at large 

spatial scales is feasible but highly demanding and requires long-term experiments.  

Therefore, the selected study areas are located in long-term ecological research (LTER) 

sites in the northern Negev Desert of Israel, across the transition between the arid and semi-

arid zones (Fig. 2A).  The area is characterized by a mean annual rainfall of 200 – 300 mm 

that is concentrated during the rainy season between November and April.  Average daily 

temperature ranges from 10°C in the winter to 30°C in the summer.  The transformed land 

use includes several treatments (managements): (1) a natural shrubland area was 

transformed to a planted forest; (2) a traditional grazing area was transformed to a shrubland 

area where grazing has been excluded; (3) an agro-pastoral area was transformed to an 

abandoned field where grazing has been excluded; and (4) an abandoned field where 

grazing had been excluded was transformed to an abandoned field with grazing.  

3.1.1. Afforestation system  

The study was conducted at the Yatir Forest (Fig. 2B) that is a pine forest of approximately 

2,800 ha comprising predominantly Pinus halepensis Mill, planted mainly between 1965 and 

1969 (35°03'E, 31°20'N 650 m a.m.s.l.).  The silty-loam soil is of aeolian origin deposited on 

a chalk and limestone substrate.  There is no distinct organic horizon other than an 

occasional thin, 1–3 cm, litter layer (Grunzweig et al., 2003).  The Yatir Forest is the largest 

planted forest in the semi-arid northern Negev Desert (Bonneh, 2000; Volcani et al., 2005).  

The surrounding native vegetation is a two-phase mosaic dominated by the shrub 

Sarcopoterium spinosum (L.) embedded in a soil biological crust matrix.  During the rainy 

season, herbaceous annuals and perennials (vegetation height 30–50 cm) are prominent in 

both patches (Sprintsin et al., 2009).  Samples were taken from four locations according to 

the landscape patchiness in the afforestation system: (1) under the forest canopy 

(understory); (2) in the open patches of the forest;  (3) under the shrub in an adjacent 

shrubland;  and (4) in the open patches in an adjacent shrubland (Table 1).  

3.1.2. Traditional grazing ecosystem 

The traditional grazing study was conducted at the Lehavim experimental farm (34°49E, 

31°21N, 350–500 m a.m.s.l.) (Fig. 2C).  The bedrock lithology is chalk of the Eocene, and the 

soil is loamy (Stevi et al., 2008).  The vegetation physiognomy is a shrubland in which 

Sarcopoterium spinosus, Corydothymus capitatus, and Thymelea hirsute are the dominant 

shrub species imbedded in soil biological crust matrices.  Annuals species represent 56% of 

the regional flora (Danin and Orshan, 1990).  The herbaceous vegetation appears in the mid-

winter and persists for 2–5 months, depending on the amount and distribution of rainfall 

(Karnieli, 2003; Karnieli et al., 2002). 

The 800-ha experimental farm was established in 1980 under the auspices of the Israeli 

Ministry of Agriculture and Rural Development and has since been moderately grazed by 

flocks of sheep and goats (Stevi et al., 2008).  Four permanent enclosure plots (10x10 m) to 
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prevent grazing were established on each slope in 1993.  The area was grazed every year 

by a flock of about 600 Awassi sheep and 200 goats, starting in late January, after annuals 

germination, continuing until May (green pasture), and again from August to December (dry 

pasture).  A shepherd directs the flock over the range, to ensure foraging over the entire area 

and maximal consumption of the available vegetation.  The study area was sampled on the 

south- and north-facing slopes near the wadi shoulders (moderate slope) (Table 1).  

3.1.3. Agro-pastoral ecosystem  

The agro-pastoral study was conducted at the Migda experimental farm in the northern 

Negev Desert of Israel, located northwest of Beer-Sheva (34°25E, 31°22N, 100-120 m 

a.m.s.l.) (Fig. 2D).  The farm was established in 1960 by the Agricultural Research 

Organization with an area of 400 ha supporting extensive agriculture that includes grazing 

under different grazing regimes.  The main crop is spring wheat (Pimstein et al., 2009), 

growing annually during the rainy season from October to April.  The bedrock lithology is 

chalk of the Eocene, and the overlaying soil is a sandy-loam.   

The farm has been grazed every year by a flock of about 800 Awassi sheep and 600 goats, 

starting in late February, when the field is fully covered, continuing until May (green pasture), 

and again from June to December (dry pasture).  The grazing in the farm is managed by 

controlling the intensity, stocking density, flock size, and the timing of herd introduction in the 

field.  Three fields were examined (Table 1): (1) an abandoned agricultural field with natural 

vegetation in an area of 5 ha of mainly annual plants.  In this field, no cultivation, irrigation, 

fertilization, or grazing has been performed; (2)an  abandoned field in an area of 9.6 ha, 

mainly with annual plants, with grazing, but with no cultivation, fertilization, or irrigation; and 

(3) a monocultural agro-pastoral field of wheat in an area of 9.5 ha, with moderate grazing 

and cultivation but with no fertilization or irrigation. 

Table 1. The transformed land uses involved in the study: afforestation; traditional grazing, and agro-
pastoral grazing.  The different treatments for each land use are listed. 
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Figure 2. Study sites of the different land uses: (A) Location map of the sites in the northern 

Negev Desert in Israel overlaid on the rainfall isohyets; (B) afforestation --Yatir Forest; (C) 

traditional grazing -- Lehavim experimental farm; and (D) agro-pastoral grazing--Migda farm.  

 

3.2 Soil sampling and laboratory analysis 

Soil samples were collected in late August of 2011, at the peak of the dry season, at a depth 

of 0–0.15m; thus, the soil water content was negligible.  The sampling was conducted 

following a stratified random survey methodology.  For each treatment, the sampling included 

five quadrates of 1 m2, randomly placed (n=5).  In each quadrate, four soil samplings of 

about 700 gr of soil were collected for laboratory measurement (N=55).  In total, 220 soil 

samples were collected (repeated measurements of four soil samples in each quadrate).  

The soil measurements that were conducted in the field included surface hardness (SH) and 

hydraulic conductivity (HC).  All soil samples were transferred to the laboratory and were 

stored unopened at room temperature until analysis. 

The Cornell Soil Health Test (CSHT) protocols were adopted for analyzing 14 physical, 

biological, and chemical soil properties (Gugino et al., 2009; Idowu et al., 2008; Schindelbeck 

et al., 2008).  The physical properties included soil texture (fractions of clay, silt, and sand), 

wet aggregate stability (AGG), residual water (RW), surface hardness (SH), and hydraulic 

conductivity (HC).  The biological properties included soil organic matter (SOM), potential 

active carbon (PAC) and root health (RH).  The chemical properties included pH, electrical 
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conductivity (EC), extractable phosphorus (P), extractable potassium (K), extractable 

ammonium (NH4
+), and extractable nitrate (NO3

-).  All laboratory measurements were 

performed with CSHT’s standards; however, minor modifications were introduced due to the 

specific management practices, climatic regions, and available tools.  These included: (1) 

wet aggregate stability that was measured by an aggregate stability kit (Herrick, 2000); (2) 

residual water (RW) that indicates the soil moisture (Black, 1965); (3) NH4
+ and NO3

-that was 

measured by potassium chloride extracts (Stevenson, 2005); and finally (4) hydraulic 

conductivity property that was measured by a mini-disk infiltrometer in the field (Ankeny et 

al., 1991). 

3.3 Spectral measurement and processing 

In each of the abovementioned quadrates, four soil samples were collected for spectral 

measurements.  A total of 440 soil samples were collected; the 220 samples of the 2011 

dataset were used for calibration while the 220 samples of the 2010 dataset were used for 

prediction.  Prior to the spectral measurements, the soil samples were ground and passed 

through a 2-mm sieve.  Soil samples were measured with the portable Analytical Spectral 

Devices (ASD) Field Spec® Pro spectrometer that consists of a spectral range of 350–2500 

nm and a 25o field of view.  The instrument was periodically calibrated to spectral reflectance 

using a standard white reference panel (Spectralon Labsphere Inc., North Sutton, NH, USA).  

Reflectance data were collected under laboratory conditions, with stable light exposure in 

both directions, at a constant height of 20 cm above the sample platform.  Each sample was 

scanned four times, after rotation, in order to avoid bidirectional and shading effects, and the 

data were later averaged to one spectral reading.  As the built-in spectral resolution output of 

the data is 1 nm along the whole spectrum, the data were resampled homogeneously to 5 

nm. 

Pre-processing of the spectral data included three transformations: (1) a second-order 

transformation of the polynomial Savitzky–Golay smoothing (Luo et al., 2005; Savitzky and 

Golay, 1964) was performed to minimize variance between samples caused by grinding and 

optical setup.  This transformation was found to be an optimal spectral pre-treatment in 

similar studies (Chang et al., 2001; Shepherd and Walsh, 2002; Vågen et al., 2006); (2) an 

autoscale transformation, which is an exceptionally common pre-processing method that 

uses mean-centering followed by dividing each variable by the standard deviation of the 

variable.  This approach is a valid method to correct differing variable scaling and units if the 

predominant source of variance in each variable is signal rather than noise.  Under these 

conditions, each variable is scaled such that its useful signal has an equal footing with the  

other variables' signals (Wise et al., 2001); and (3) a Generalized Least Squares Weighting 

(GLSW) transformation was performed to produce a filter matrix based on the differences 

between pairs or groups of samples that should otherwise be similar (Wise et al., 2006).  The 

single adjustable parameter, α, that defines how strongly GLSW down weights interferences 

was set to 0.02.  Adjusting α towards larger values (typically above 0.02) decreases the 

effect of the filter, while smaller α values (typically 0.001 and below) apply more filtering.  The 

prediction process included randomly selecting spectral samples from the 2010 dataset 

(25%) to calibrate the model for the prediction of known samples from the dataset that was 

collected in 2011.   
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3.4 Soil Quality Index (SQI) 

Evaluation of the soil quality was carried out using the general approach of the soil quality 

indices, involving scoring functions for each of the abovementioned soil properties (Andrews 

et al., 2004).  The scoring functions were defined in a simple nonlinear polynomial 

framework.  Each soil property was transformed through a scoring algorithm into a unitless 

score (0 to 1) representing the associated level of function in that system so that the scores 

may be combined to form a single value (Andrews et al., 2004; Karlen et al., 2001; Karlen et 

al., 2003; Karlen et al., 1997).  The interpretation of the scoring function was then integrated 

into an index calculated by a PCA (Bhardwaj et al., 2011; Masto et al., 2008; Masto et al., 

2007). The index values ranged from 0 to 1; low values indicated poor soils while high values 

indicated healthy soils (Gugino et al., 2009). 

The success and usefulness of this method depend mainly on setting the appropriate critical 

limits for individual soil properties.  Threshold (optimum) values can be obtained from the 

soils of undisturbed ecosystems where soil functioning exhibits the potential soil functioning 

of the ecosystem (Arshad and Martin, 2002; Glover et al., 2000).  Thresholds for each 

property measurement were set based on the range of values measured in natural 

ecosystems and on the critical values in the literature.  After finalizing the thresholds, the soil 

property values were recorded by the different algorithms (scoring functions) to transform 

them to unitless scores Si  for each soil property, using the following equation (Kinoshita et 

al., 2012; Masto et al., 2008; Masto et al., 2007):  

 
( ) 1(1 )b x aSi e      (1) 

where x  is the normally distributed soil property value, a  is the baseline value of the soil 

property where the score equals 0.5 (inflection point) or the population mean of the natural 

ecosystems, and b  is the slope tangent of the baseline curve.  Three types of scoring 

functions were considered: (1) more is better – an upper asymptotic sigmoid curve (negative 

slope) that characterizes aggregation, residual water, soil organic matter, potential active 

carbon, ammonium, nitrate, and potassium; (2) less is better -- lower asymptote (positive 

slope) that characterizes root health and surface hardness; and (3) an optimum mid-point-

Gaussian function that characterizes pH, EC, phosphorus, and hydraulic conductivity.  The 

curve shapes were determined by the literature (Andrews et al., 2004; Glover et al., 2000; 

Karlen et al., 2001; Karlen et al., 2003; Schindelbeck et al., 2008).  All the soil measurement 

scores were integrated from the previous stage into a single additive index value termed a 

Soil Quality Index (SQI) (Eq. 2).  This value is considered to be an overall assessment of soil 

quality, reflecting management practice effects on soil function (Masto et al., 2008; Masto et 

al., 2007).  To evaluate the index, the PCA statistical method, a common tool in 

chemometrics for data compression and information extraction, was used.  A PCA finds 

combinations of variables that describe major trends in the data: 

 
1

n

i

SQI PWi Si


    (2) 

where PWi  is the PCA weighing factor.  Standardized PCAs of all (untransformed) data that 

differed significantly between treatment in the different land uses were performed using the 
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MATLAB package (Wise et al., 2006).  The equation was normalized to get a maximum SQI 

with a score of one.  Principal components (PCs) with eigenvalues higher than 1 that 

explained at least 5 percent of the variation of the data were examined (Andrews et al., 2002; 

Masto et al., 2008).  Under a particular PC, only the variables with high factor loading were 

retained for soil quality indicating.  High factor loading was defined as having an absolute 

value within 20 percent of the highest factor loading.  When more than one variable was 

retained under a single PC, a multivariate correlation was employed to determine if the 

variables could be considered redundant and, therefore, eliminated from the SQI.  If the 

highly loaded factors were not correlated, then each was considered important, and thus, 

retained in the SQI.  Among well-correlated variables, the variable with the highest factor 

loading (absolute value) was chosen for the SQI.  Each PC explained a certain amount of 

variation (percent) in the total dataset, and this percentage provided the weight for variables 

chosen under a given PC. 

3.5 Correlation between soil and spectroscopy analyses 

A partial least-squares–regression (PLS-R) cross-validation procedure was used to correlate 

the spectral data with the laboratory soil measurements.  A PLS-R is a predictive module 

technique used in spectroscopy, and it is commonly used for quantitative spectral analysis 

(Viscarra Rossel et al., 2006; Wold et al., 2001).  It can construct predictive models when 

there are many predictor variables that are highly collinear.  The technique is closely related 

to a principal components regression (PCR).  However, unlike PCR, the PLS-R algorithm 

selects orthogonal factors that maximize the covariance between predictor (X spectra) and 

response variables (Y soil laboratory data or scores).  The PLS-R analysis was applied with 

the full cross-validation of the Venetian Blinds method (Efron and Gong, 1983) by the toolbox 

of Eigenvector© software.  In this study, the correlations were between 14 soil properties and 

the calibrated dataset.  The prediction was evaluated by the Root Mean Square Error of 

Calibration and Cross Validation (RMSEC and RMSECV), as well as by the coefficient of 

determination (R2) values of the relation between the predicted and observed soil property, 

and by the ratio of performance-to-deviation (RPD), calculated as RPD = SD/RMSECV. 

In order to evaluate the relative importance of each waveband in each of the PLS-R models, 

the variable importance in projection (VIP) was computed to reveal the score for each 

wavelength (Cécillon et al., 2008).  VIP scores are a measure of the importance of each 

explanatory variable (i.e., wavelength).  Since the average of squared VIP scores equals 1 

(Wold et al., 2001), only influential wavelengths with a VIP score greater than 1 are identified 

as important wavelengths.  The VIP can be used in cases of multi-collinearity among the 

predictors.  The VIP analysis was applied in the MATLAB numerical computing environment 

using the PLS toolbox of Eigenvector©. A PLS-R cross-validation was also used to correlate 

the spectral data (indirect spectral measurement) with the SQI.  Despite the large scientific 

use of the PLS-R in spectroscopy and the extensive research into soil quality, to the best of 

the authors’ knowledge, no such correlations have been carried out previously.  The same 

validating procedures were used as mentioned above.  

3.6 Soil spectra classification and Spectral Soil Quality Index (SSQI) 

A partial least squares – discriminant analysis (PLS–DA) was performed to quantify the 

changes in soil quality in the different land-uses (afforestation, traditional grazing, and agro-
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pastoral grazing) and in the different treatments.  The PLS–DA is a variant of PLS modeling 

and aims to find the variables and directions in multivariate space that determine the known 

classes in a calibration set.  The predictor (X spectra) and the response variables are the 

classification category variables (Y values) (Singh et al., 2005). The PLS-DA is a linear 

regression method whereby the multivariate variables corresponding to the observations 

(spectral descriptors) are related to the class membership for each sample (land-use 

category or treatment).  The PLS-DA provides an understandable graphical means of 

identifying the spectral regions of difference between the classes and also allows a statistical 

evaluation as to whether the differences between classes are significant.  The strength of the 

model is defined by the Kappa coefficient and the total accuracy calculated from the model’s 

confusion matrix (Wise et al., 2006).  Discriminant analysis has been used in soil analysis to 

classify soil attributes.  Carroll et al. (2006), for example, used a discriminant analysis for 

classification of the various soil types, based on their respective physical, biological, and 

chemical characteristics, and to identify relative changes in each soil type after an extended 

period of application of effluent.  In addition, Awiti et al. (2008) used discriminant analysis for 

classifying spectral case definitions to define poor or degraded soil classes throughout a 

tropical forest-cropland.  There are two main purposes for which discriminant analysis is 

commonly used: (1) to analyze the differences between two or more groups of multivariate 

data using one or more discriminant functions in order to maximally separate the identified 

groups; and (2) to obtain linear mathematical functions that can be used to classify the 

original data, or new unclassified data, into the respective groups(Awiti et al., 2008).   

The PLS-DA output was used to develop a scoring function in an attempt to evaluate the soil 

quality only by spectral differences.  A proportional odds logistic model was used for 

evaluating the scores of the spectral SQI from the PLS-DA output.  The proportional odds 

model is based on the cumulative probabilities of the coefficient of variation ( )CV  and the 

latent variable ( )LV .  Consequently, the proposed spectral SSQI is a function of the 

cumulative probability scoring class, ranging from 0 to 1 as in the SQI: 

 
2[ ( )] 1( )T CV LVSSQI e      (3) 

where 2T refers to the Hotelling's T-squared distribution value (Hotelling, 1931; Wise et al., 

2006) that represents a measure of the variation in each sample within the model.  The 2T

indicates how far each sample is from the center of the model (score = 0) and represents the 

score distance (SD) within the PLS-DA.    is the slope of the function and is calculated from 

a range of the minimum and the maximum values of the function.  Under a particular CV , 

only the variables with high factor loading were retained for the SSQI, and under a particular 

LV , only the variables with high factor loading were retained.  High factor loading was 

defined as having an absolute value within 20 percent of the highest factor loading (Andrews 

et al., 2002).  When more than one variable was retained under a single LV , a multivariate 

correlation was employed to determine if the variables could be considered redundant and, 

therefore, eliminated from the SSQI.  If the highly loaded factors were not correlated, then 

each LV was considered important, and thus, retained in the SSQI.  Among well-correlated 

variables, the variable with the highest factor loading (absolute value) was chosen for the 

SSQI.  The cumulative variance of the model is the scores for the individual samples, and the 

coefficients of the LV are the weighing factors obtained from the PLS-DS model.  Each LV
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explains a certain amount of variation in the total dataset; this percentage provides the 

weight for variables chosen under a given LV .  

3.7 Statistical analysis 

Analyses of variances for all parameters were tested using: (1) a General Linear Model 

(GLM) analysis of random effect (Nested-AVOVA); and (2) a one-way ANOVA for the 

average sample for each quadrate in a treatment (n=5).  The separation of means was 

subjected to a Tukey test for a significant difference test.  A correlation matrix analysis was 

conducted to identify the relationships between the measured parameters.  The statistical 

analysis was performed with STATISTICA Version 10, 2011 Software.  The soil quality 

indices (PCA, PLS-R, and PLS-DA) included the RMSEC and RMSECV and the confusion 

matrix were calculated in MATLAB Version 7, 2011 software with a PLS toolbox 

(EIGENVACTOR research) and using Microsoft Excel packages.  Soil quality properties and 

soil quality indices were tested for their level of significance at P=0.05 between different land 

uses and treatments. 

4 Results and discussion 

4.1 Soil quality indices (SQI) 

The mean values of all the soil properties across the three land use types are presented in 

Tables 2-4, along with their standard deviations and significance values.  The afforestation 

soil properties are shown in Table 2.  The results of the afforestation land use were 

significantly higher than the shrubland system in the AGG, SOM, and PAC properties. In 

addition, significant differences in soil texture were observed from the silt-loam soil in the 

natural shrubland to the loam soil in the forest.  The soil with a higher clay content in the 

forest has a higher ability to retain nutrients (higher cation exchange capacity) and can bind 

more organic matter (Idowu et al., 2008).  The results in the forest understory and under the 

shrubs in the shrubland, with respect to the open patches, showed significant increases in 

AGG, RW, SOM, EC, NO3
-, and P.  A high negative correlation was found between SH and 

HC (R2=0.72; P<0.01) and between SOM and AGG (R2=0.87; P<0.01). 

The SQI results from the afforestation land use type are shown in Figure 3.  The SQI score in 

the forest understory is 0.62, while in the forest open patches, it is 0.67.  The natural 

adjacent shrubland exhibits opposite trends in which the high SQI values are in the natural 

shrub area with a score of 0.76 versus the natural crusted area with a score of 0.56.  The 

SQI outcomes reflect significant differences between the landscape mosaic of the woody 

patches that have resulted from long-term management action (F(3, 76) =77.68; P<0.01).  More 

results and detailed interpretations can be obtained at Paz-Kagan et al. (2013b). 

The results of the soil properties of the traditional grazing land use are shown in Table 3.  

The results of the grazing on the northern- and southern-facing slopes, with respect to the 

treatment with no grazing, revealed significant reductions in SH, SOM, PAC, pH, and K.  

Additionally, a significant increase in the soil HC was observed in the grazing treatment.  The 

soil texture showed a change from a silt-loam texture to loam in the grazing area, with 

respect to the treatment with no grazing, due to an increase in silt content.  However, the soil 
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Table 2. Soil quality indicators for the afforestation land use with the following treatments:  understory forest canopy, open patches, shrubland under the 

shrub, and shrubland soil biogenic crust in the open patches.  Statistics include: average value, standard deviation, and significant differences between 

treatments.* 

 

*Abbreviations: AGG- aggregation; RW- residual water; SH- surface hardness (penetration); HC- hydraulic conductivity (infiltration); SOM- soil organic matter ; PAC- 

potential active carbon; RH- root health; EC- electric conductivity; NH4- ammonium; NH3- nitrate; P- phosphorus; K-potassium; NS- no significant differences; small letters 

indicate significant differences between treatments.   Values in each vertical column followed by the same letter do not differ significantly at P<α using ANOVA Tukey test. 
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Figure 3. Scores of Soil Quality Indices (SQIs) for the three land uses -- afforestation, 

traditional grazing, and agro-pastoral grazing -- and for different treatments.  SQI was 

calculated by physical, chemical, and biological analyses.  

 

NH4
+ and NO3

- did not respond to the long-term grazing, as presented in previous studies (Lin 

et al., 2010; Rietkerk et al., 2000).  Negative correlations were found between SH and HC 

(R2=0.69; P<0.01) in all treatments. 

The results of the soil quality indices in the traditional grazing land use are presented in 

Figure 3.  The SQI scores in the treatments with no grazing in the northern - and southern-

facing slopes are 0.70 and 0.67, respectively, and are significantly higher than in the grazing 

treatments (F(3, 76) =21.55; P<0.01).  The scores of the treatments with grazing on the 

northern- and southern-facing slopes are 0.61 and 0.59, respectively.  The changes in soil 

quality cause a reduction in the functionality of the soil after long-term livestock grazing in the 

traditional grazing land use in semi-arid areas.  More results and detailed interpretations can 

be obtained at Paz-Kagan et al. (2013a). 

Table 4 presents the results of the grazing treatment in the agricultural land use type.  In the 

monocultural agro-pastoral treatment, as compared to the abandoned field with no grazing, 

there were significant reductions in AGG, RW, SH, PAC and K.  On the other hand, 

significant increases in NH4
 +, NO3

-, and HC were found in the monocultural agro-pastoral 

treatments.  Also, a significant change in the soil texture was found (due to a higher clay 

component).  The abandoned field with grazing, as compared to the abandoned field with no 

grazing, showed significant increases in the soil properties of SOM, EC, NO3, P, and K.  On 

the other hand, significant reductions in RW, NH4
+, and pH were found. 
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Table 3. Soil quality properties for the traditional grazing land use with the following treatments: northern and southern slope with 

grazing and with no grazing.  Statistics include: average value, standard deviation, and significant differences between treatments.  

 

 *Abbreviations: AGG- aggregation; RW- residual water; SH- surface hardness (penetration); HC- hydraulic conductivity (infiltration); SOM- soil organic matter ; 

PAC- potential active carbon; RH- root health; EC- electric conductivity; NH4- ammonium; NH3- nitrate; P- phosphorus; K-potassium; NS- no significant 

differences; small letters indicate significant differences between treatments.   Values in each vertical column followed by the same letter do not differ 

significantly at P<α using ANOVA Tukey test. 
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Table 4. Soil quality indicators for the agro-pastoral grazing land use with the following treatments: abandoned field with no grazing; 

monocultural agro-pastoral grazing on wheat field; and abandoned field with grazing.  Statistics include: average value, standard 

deviation, and significant differences between treatments.   

 

*Abbreviations: AGG- aggregation; RW- residual water; SH- surface hardness (penetration); HC- hydraulic conductivity (infiltration); SOM- soil organic matter ; 

PAC- potential active carbon; RH- root health; EC- electric conductivity; NH4- ammonium; NH3- nitrate; P- phosphorus; K-potassium; NS- no significant 

differences; small letters indicate significant differences between treatments.   Values in each vertical column followed by the same letter do not differ 

significantly at P<α using ANOVA Tukey test. 
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The SQI score in the monocultural agro-pastoral system (wheat field) is 0.67; in the 

abandoned field with no grazing, the score is 0.66, and in the abandoned field with grazing, 

the score is of 0.54 and is significantly lower than the agro-pastoral and abandoned field with 

no grazing (F (2, 57) =68.21;P<0.01) (Fig. 3).  The monocultural agro-pastoral treatment 

showed higher sustainability to grazing than the abandoned field with grazing.  The grazing 

treatment based on natural vegetation revealed a significant decline in the SQI as a result of 

moderate grazing applications in the semi-arid area.  The SQI model showed that long-term 

management of land-use transformation changes the soil quality.  More results and detailed 

interpretations can be obtained at Paz-Kagan et al. (2013a). 

In summary, the SQI equation may be valid for establishing the degree of degradation of 

soils as a function of soil properties.  In addition, it enables the identification of changes in 

the soil properties and the monitoring of them.  However, it is essential that these indices be 

validated under various other land and management systems before further use.  A major 

constraint in soil assessment is the question of critical limits and standardization for soil 

properties (Masto et al., 2008; Masto et al., 2007).  Critical limits (threshold values) are 

required to monitor changes and determine trends in improvement or deterioration in soil 

quality for various land uses (Arshad and Martin, 2002).  The slow progress on critical limits 

for soil properties is largely due to the fact that soil is a heterogeneous system with complex 

interactions and feedback relationships between soil properties.  To overcome this 

constraint, the model of the SQI was developed as a comparison model between the 

transformed land use and the natural land use after long-term management. 

4.2 Correlation between laboratory and spectroscopy 

analyses 

Reflectance spectroscopy is directly influenced by the combinations and overtones of the 

fundamental vibrations of mineral and organic functional groups, as well as electronic 

transitions (Awiti et al., 2008).  Table 5 presents the results of the PLS-R analysis in terms of 

wavelengths that are indicative for each of the soil properties.  Statistics include the 

coefficient of determination, the root mean square error of calibration (RMSEC), the root 

mean square error of cross-validation (RMSECV), and the ratio of performance to deviation 

(RPD).  The RPD was calculated since RMSEC and RMSECV alone cannot provide 

sufficient information on model predictability due to the variable standard deviation of the soil 

properties, while RPD can be compared across the soil properties measured in different 

units.  No critical value exists for RPD in soil science, but an RPD > 2 is denoted as 

satisfactory (Chang et al., 2001).  Three categories of predictability were suggested by 

Chang et al. (2001); these are category A (R2 > 0.80; RPD > 2.00), category B (0.50 < R2 < 

0.80; 1.40 < RPD < 2.00), and category C (R2 < 0.50; RPD < 1.40). In addition, Table 5 

summarizes the examples from the literature review of indicative spectral regions for each 

soil property, along with the best reported correlation of determination.  One may note that 

many of the PLS-R-derived wavelengths are in agreement with those that were previously 

found in other studies.  

Figure 4 shows scatterplots of predicted soil spectroscopy versus laboratory-measured soil 

values of several soil properties for the calibration dataset with a coefficient of determination 

range between 0.72 and 0.91 (Figure 4 represent the results by  RMSC, RMSCV, R2, RPD, 

and number of LV for each soil property).  The highest results of the PLS-R model prediction 
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were associated with the RPD category A (R2 > 0.80; RPD > 2.00), including sand-silt-clay 

content, NH4, NO3, and pH.  Satisfactory results of category B (0.50 < R2 < 0.80; RPD > 2.00) 

were obtained for RW, SOM, EC, and potassium.  Poor validation results of category C (R2 < 

0.50; RPD < 2.00) were obtained for PAC, phosphorus, and HC (Table 5, Figure 4).  

 

 
 

Fig. 4. Scatterplots of cross-validation (CV) predicted values versus measured values for 

several soil properties for the calibration dataset for all land uses.  Calibration models were 

developed with a partial least-squares regression. RMSEC = root mean square error of 

calibration; RMSECV = root mean square error of cross-validation. *RW- residual water; 

SOM- soil organic matter; NH4- ammonium; EC- electric conductivity; NH3- nitrate. 
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Table 5. Results of partial least squares regression (PLS-R) analysis in terms of spectral 

regions that are indicative for the soil properties.  Statistics include the correlation of 

determination (R2), the root mean square error of calibration (RMSEC), the root mean square 

error of cross-validation (RMSECV), and the ratio of performance-to-deviation (RPD). 

Examples of literature findings for indicative spectral regions are given, along with the best 

reported correlations of determination.  Bold numbers refer to present correlations to 

sensitivity bands known from the literature.  
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Among the soil physical properties, residual water was found to be sensitive at 1200, 1450, 

1962, and 2200 nm.  The soil particle size influences light scattering, and soil texture (sand, 

silt, and clay) is sensitive at 1900, 2000-2200 nm (Islam et al., 2003).  The VIS-NIR-SWIR, 

characterized by two strong absorption features at 1400 and 1900 nm, can usually be visible 

based on the specific surface area (SSA) content of the solid soil phase that eventually 

controls the hygroscopic moisture content (residual water, RW).  These wavelengths are 

related to the O-H bands (Banin and Amiel, 1970; Bowers and Hanks, 1965; Chang et al., 

2001; Confalonieri et al., 2001; Dalal and Henry, 1986; Demattê et al., 2006; Lagacherie et 

al., 2008; Mor´on and Cozzolino, 2003).  The water absorption wavelengths show moderate 

or weak absorption features in the SWIR region due to clay minerals (2200 nm), carbonate 

(2330 nm), salt or primary minerals, and organic compounds in the soil (Ben-Dor and Banin, 

1995; Ben‐Dor et al., 2008; Chang et al., 2001; Dalal and Henry, 1986; Malley et al., 2004).  

NIR is directly influenced by the organic matter and bound water (Ben‐Dor et al., 2008).  

With respect to soil biological properties, the soil organic matter is sensitive at 1350-1450 

and 2200 nm. Those wavelengths are related to the C-H absorption in the spectral 

wavelength  (Ben-Dor and Banin, 1994; Ben‐Dor et al., 2008; Confalonieri et al., 2001; 

Haberern, 1992; Malley et al., 2002; Rinnan and Rinnan, 2007).  With relation to soil 

chemical properties, the mineral N (NH4 and NO3) was found to be sensitive at 1700-1800 

and 2180-2270 nm (Morra et al., 1991; Rinnan and Rinnan, 2007), although it is 

characterized by poor predictability (Malley et al., 2002).  Theoretical second- and third-order 

bands exist in the NIR region for N bonds of this nature.  Possibly, the absorbance is 

interfered with by water, organic matter, and/or iron oxides.  The pH was found to be 

sensitive at 1477, 1932, and 2200 nm; measurement of pH using NIR spectroscopy has 

generally been well predicated in the literature (Table 5).  Hydrogen ions are not primary 

absorbers in the NIR region, but the basis of prediction may be through O-H groups, or other 

basic ions such as carbonate (Malley et al., 2004; Mouazen et al., 2007; Reeves and 

McCarty, 2001).  The EC affect bands at 1760-1780 and 1830-1970 nm due to connection to 

the gypsum and salt contents and in the soil (Ben‐Dor et al., 2008; Farifteh et al., 2008; 

Malley et al., 2004).  There are several tentative wavelengths in the NIR region for 

compounds involving P.  The majorities of these wavelengths are third order, with some 

being second or first order.  The prediction of K was relatively high (r2=0.76) and included 

sensitivity bands at 1850, 1940, 2180, and 2290 nm.  The K is generally not amenable to 

analysis by NIR spectroscopy (Malley et al., 2002), although it has been reported to have a 

high spectral correlation (Daniel et al., 2003). 

Scatterplots of predicted reflectance SQI versus spectral measurements in the transformed 

land uses, along with their RMSEC, RMSECV and RPD, are presented in Figure 5.  

Coefficients of determination range between 0.65 and 0.8.  The highest validation of the PLS-

R model prediction value was obtained for the afforestation (r2=0.81; RPD=2.51), lower for 

the traditional grazing (r2=0.75; RPD=2.05), and the lowest for the agro-pastoral land use 

(r2=0.65; RPD=2.01).  Our results show that reflectance spectroscopy in the VIS, NIR, and 

SWIR spectral range can be used for the simultaneous assessment of various soil properties 

and for SQI in a transformed land use.  Furthermore, after finalizing the SQI, the use of the 

PLS-R technique is rapid, making it possible to analyze a large number of samples in a 

practical and timely manner as a prediction model.  These merits make spectroscopic 

analysis, combined with PLS-R, an attractive method for environmental monitoring, 

especially for modeling soil quality in a transformed land use.  The disadvantage in this 
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procedure is that it requires verification of the soil quality indices with direct soil 

measurement.  As mentioned previously, laboratory analyses are complex, time and labor 

consuming, and expensive. 

Fig. 5. Scatterplot comparisons of soil quality indices (SQI) and predicted values reflectance 

spectroscopy for the transformed land uses.  Calibration models were developed with a 

partial least-squares regression. 

4.3 Soil spectra classification in land –use types 

The proportional odds in the PLS–DA classification  of the spectral samples, in each 

treatment within each land use, during 2010-2011, are presented in Figure 6A-C, and in all 

land uses in both years in Figure 6D.  Table 6 shows the Kappa coefficient, the total 

accuracy of the model, and the prediction model of unknown samples (prediction of samples 

from the 2010 dataset are based on the 2011 dataset).  Figure 7 shows the PLS–DA 

classification of the land use and the prediction model of unknown samples.  The PLS-DA 

provides an explicitly quantitative approach to predict the cumulative probability of soil 

spectral samples that belong to different soil conditions.   

Determination of the optimal number of PLS sLV  was performed by the cross-validation 

procedure.  Three sLV  were selected since they have eigenvalues higher than 1.  These 

eigenvalues explain at least 5 percent of the variation of the data.  The total accuracy of the 

model was calculated to be of a Kappa coefficient >0.92 and a total accuracy >0.9, and in the 

prediction of unknown samples, of a Kappa coefficient >0.75 and a total accuracy >0.7 

(Table 6).  The PLS-DA model describes the maximum possible separation of predefined soil 

conditions.  This technique can also be useful to determine that a sample does not belong to 

any of the predefined classes.  Furthermore, these results demonstrate the sensitivity of 

reflectance spectroscopy to management changes in converted land-use soil conditions.  
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Table 6. Accuracy assessment of the soil spectra classification in each treatment and in all 

land uses.  

 

 

Figure 6. Partial least squares–discriminant analysis (PLS–DA) classification by treatments 

and land use: (A) afforestation; (B) traditional grazing; (C) agro-pastoral grazing; and (D) all 

land uses.  Filled and unfilled circles refer to the 2010 and 2011 datasets, respectively.  

Dashed circle indicates the 95% confidence level. 
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Figure 7. Partial least squares–discriminant analysis (PLS–DA) classification and prediction 

of 2010 from 2011 dataset in the different land uses: traditional grazing; agro-pastoral 

grazing; and afforestation.  Filled and unfilled circles represent the 2010 and 2011 datasets, 

respectively, and plus signs (+) represent the predicted 2010 dataset.  Dashed circle 

indicates the 95% confidence level. 

4.4 Spectral soil quality index (SSQI) 

The land use soil condition scores were well separated, and each sample represents 

different SSQI scores.  The comparison of the SSQIs (indirect measurements) to the SQIs 

(direct measurements) is shown in Figure 8-9.  The calibrations set between the SSQI and 

the SQI were, in the afforestation land-use, R2=0.66; P<0.01, in the traditional grazing, 

R2=0.67; P<0.01, and in the agro-pastoral land-use, R2=0.74; P<0.01.  The SSQI indicates 

higher values than the SQI; the model of the SSQI is a proportional model that is not based 

on the individual probability of each class but on the cumulative probabilities.  Therefore, the 

proportions between classes that explain the changes caused by management are more 

essential than the actual values.  

Although there have been several attempts to predict soil physical, biological, and chemical 

properties using reflectance spectroscopy (Cécillon et al., 2009a), the current study  pioneers 

the use of PCA, PLS-R, and PLS-DA of the VIS-NIR-SWIR spectra for assessing the soil 

quality.  The ability of the model to predict soil quality or functionality by spectroscopy is an 

essential tool for soil monitoring (Awiti et al., 2008; Cécillon et al., 2009a; Cécillon et al., 

2008; Cécillon et al., 2009b).  In addition, the model is capable of evaluating the SSQI 

between the different land uses, a comparison that is not possible in the SQI due to the need 

to specify a land-use threshold (Figure 10).  The results show that the afforestation, 

traditional grazing, and the agro-pastoral grazing land uses have SSQI scores of 0.78, 0.87, 

and 0.57, respectively.  The differences between the SSQIs of the land uses are significant 

(F (2,216) =128.49; P<0.01). 
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Figure 8. The comparison of the spectral soil quality index (SSQI) (dark columns) to the soil 

quality index (SQI) (bright columns) of the three land uses with the different treatments: 

afforestation, traditional grazing, and agro-pastoral grazing land use by treatments.  The 

columns present average values and standard deviations. 

 

 

Figure 9. Scatterplot correlation of soil quality indices (SQI) and spectral soil quality indices 

(SSQI). 
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Figure 10. The results of the spectral soil quality indices (SSQI) in all three land uses: (1) 

traditional grazing; (2) afforestation; and (3) agro-pastoral land-use.  The figure presents 

average values and standard deviations.  

Assessment of soil conditions with reflectance spectroscopy, as presented above, enables 

the rapid tracing of the states of soil quality or of its changes after long-term management 

(transformed land use).  In addition, successful classifications of sites were performed, 

regarding the land use and soil conditions.  This SSQI can be used for assessing hot spots of 

change in transformed land uses and for identifying soil degradation.  However, in order to 

examine the causes of the change in soil quality, much more detailed research should be 

done on direct soil measurements, in terms of laboratory analyses as inputs for models such 

as the SQI. 

Soil quality policies usually address specific management goals, such as productivity, waste 

recycling, or environmental protection (Andrews et al., 2004).  Thus, methodologies for soil 

quality assessment should be able to measure specific soil functions or soil ecosystem 

services associated with these management goals.  Assessing SSQI by VIS-NIR-SWIR 

spectroscopy as a preliminary tool for detecting hot spots of soil degradation can provide an 

alternative to laboratory analyses.  The benefits of this technique include a reduction of the 

sampling processing time and an increase in the number of samples that can be analyzed 

within time and budget constraints, and hence, an improvement of the detection of changes 

in soil quality in a given area.  It is a rapid, non-destructive, reproducible, and cost-effective 

analytical method, and therefore, it is a promising tool for soil quality assessment.  However, 

the challenge is to move from the field and the laboratory scale to a larger scale for the 

effective monitoring of soil quality with airborne or spaceborne spectroscopy. In addition, 

assessments of soil conditions at the regional scale across various soil types are needed.  

This model is based on laboratory measurements under controlled conditions that avoid the 

disruptive factors that characterize field measurements, such as soil moisture content, soil 

roughness, and vegetation cover (Stevens et al., 2008).  There is a need for additional 
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studies to identify the potential of the SSQI in a spatial resolution for large ranges of spatial 

domains, from laboratory point measurements, through ground-level and airborne, and up to 

spaceborne images.  In addition, there is a need to examine the model’s capability in 

different soil types and climatic regions.   

5 Conclusion 

This study underscores the potential application of reflectance spectroscopy as a reliable 

diagnostic screening tool for assessing soil quality.  Classification of soils into spectrally 

defined entities provides a basis for spatially explicit and quantitative definitions for 

developing SSQI.  This paper proposes a framework for the use of VIS-NIR-SWIR 

spectroscopy as a tool for assessing soil quality.  The linear models used, PCA, PLS-R, and 

PLS-DA, improved the ability to predict soil properties and SQI.  These methods enable to 

overcome common difficulties that usually rise by the huge number variable (multivariant) 

with high multicollinearity.  The ability and motivation to assess soil quality varies among the 

different indices:   

(1) The SQI was found to be a good tool for diagnosing the degradation or amplification 

of different soil properties and to identify the critical changes in soil functionality.  The 

SQI is an integrative approach that recognizes the physical, biological, and chemical 

processes in soils.  However, it requires finalizing the critical limit for various land-use 

and management systems before their successful use.  In addition, it requires many 

soil analyses; monitoring such soil quality indices at different scales and land uses is 

expensive and time consuming.  This problem can be partially solved by combining 

direct (field and laboratory) and indirect (reflectance spectroscopy) methods and 

models, such as PLS-R.  

(2) The SSQI is a diagnostic tool for assessing soil quality in different land uses and 

treatments.  The ability of reflectance spectroscopy was proved to be a reliable 

diagnostic tool for identifying and separating various soil properties, for identifying 

SQI in transformed land use areas, and for classifying soil conditions.  The SSQI can 

be used to assess hot spots of change in transformed land use areas and to identify 

soil degradation.  However, examining the cause of the soil degradation requires an 

extensive assessment of soil quality by direct soil measurements and the use of 

models such as SQI. 

Our findings could have strong implications regarding the monitoring of soil quality for land-

use transformation assessment.  Future studies should test the success of this framework for 

larger and more variable datasets, including different soil types and climate regions.  In 

addition, the challenge is to move from the field and the laboratory scale to the larger scale of 

image spectroscopy.  The ability to use reflectance spectroscopy for a spatial quantitative 

view of large areas can be acquired, although there are technical problem to overcome.  This 

technique can provide new information that cannot be extracted by field work that uses 

traditional soil sampling or point spectrometry measurements.  The advantageousness of 

using reflectance spectroscopy to detect soil quality and degradation processes in land-use 

changes is highly important.  These methods could expand to image spectroscopy and thus 

may be used for soil surveying or soil mapping.   
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